
Linux

(Fedora Core 7)

Date : 17 Oct07

1.0 General

Linux History & Distribution

- ❖ Common distribution of Linux
 - ✓ - Redhat (Fedora core , Enterprise)
 - Novell SUSE (Europe)
 - Ubuntu
 - mandrake
 - Debian
 - knoppix – standalone run direct from CD

a lot more ... see http://en.wikipedia.org/wiki/List_of_Linux_distributions

Open Source Software (OSS)

- ❖ Source code available to developer
- ❖ Allow to modify, improve and redistribute the code
- ❖ Free of charge
- ❖ Design with betterment in mind

Advantages

- ❖ Fast development speed (spread collaboration)
- ❖ Shorter Beta test duration
- ❖ Bug identification and fix fast

Disadvantage

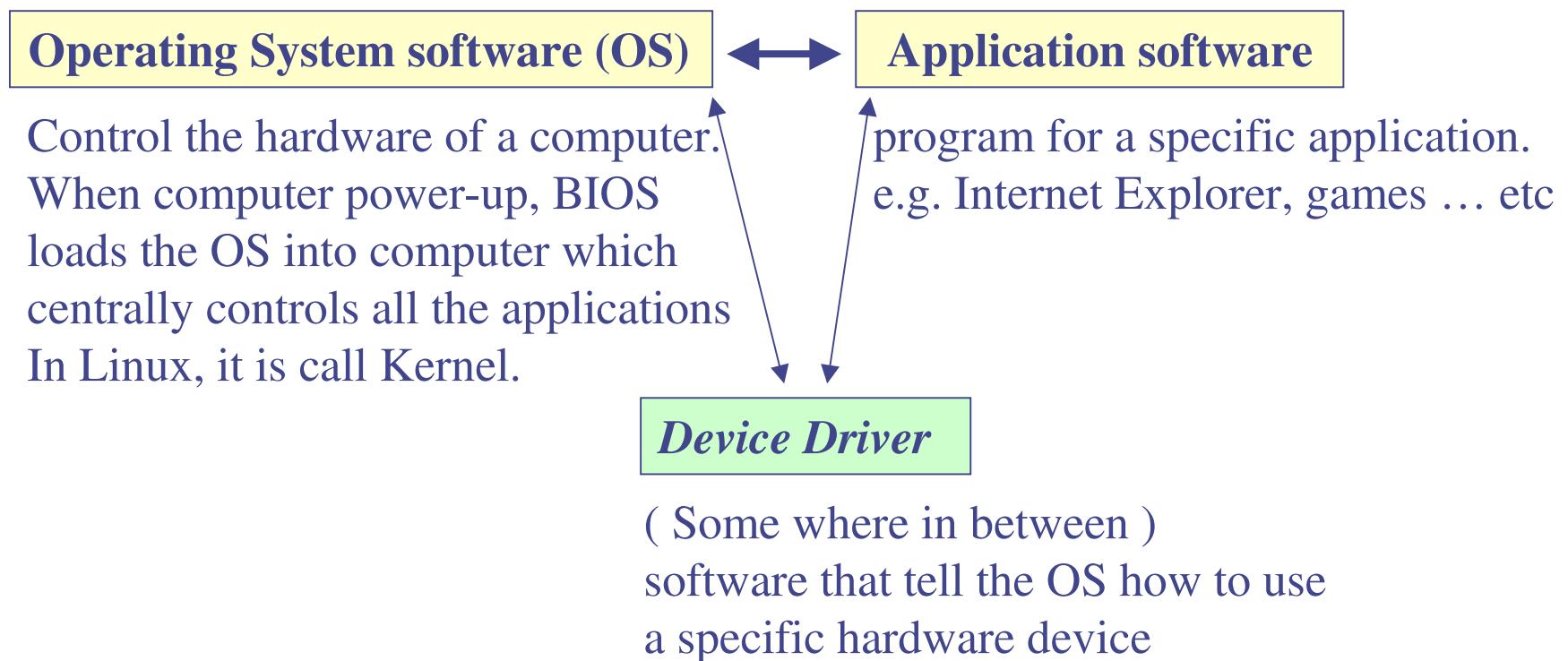
- ❖ No company really responsible , in terms of commercial commitment ,for the software

Open Source Software (OSS)

Type of software	Free source code	Free application
Open source	✓	✓
Close source	✗	✗
Freeware	✗	✓
Shareware	✗	Limited free

GUN Public License(GPL)

Developed by Free Software Foundation (FSF) stipulated that the source code of any software published under its license must be freely available. If some one modifies the source code, that source code must be freely re-distributed and therefore keeping the source code free forever

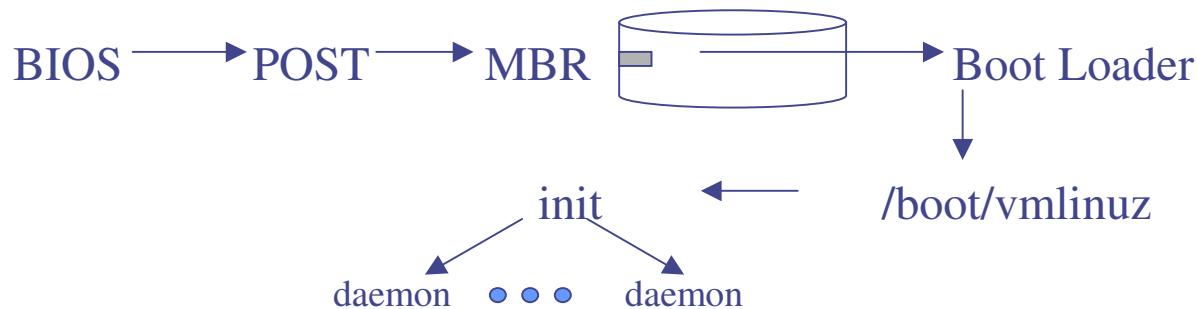

Is Linux/Embedded Linux Cost Free ?

- ❖ Freedom to use
- ❖ Costs in development using Linux is NOT FREE !
 - expertise to develop/manage/maintain the system -- **high**
 - - need in depth technical knowledge
 - not many expertise available locally
 - takes longer time to familiarize with the language and system – not so user friendly (more powerful in command line)
 - information are not customized
- Hardware (PC) / Linux Software -- **low**
 - Embedded System (hardware + development tool chain)-- **moderate**
 - - price of a specific ready-make hardware board or design cost
 - methods use on one embedded hardware may not be the same on another (expertise needed) hardware
 - development tool-chain (may need to purchase) is hardware board dependent

Choose the hardware that provide free development tool-chain

Software On Computer

Two main types


Which Version of Linux to Use ?

- ❖ For development system or general application use Fedora core 2 and above. Better GUI ,hardware driver support and more Plug & Play
- ❖ Use redhat 9 or 8 if you have no choice for some reasons
- ❖ There are some differences in file system and configuration file among Redhat8/9, Fedora, Embedded Linux ... and other Linux distribution
- ❖ If you use Linux on embedded project, MUST use exactly the version that your SDK (Software Development Kit) required unless you prepare to spend time to make changes
- ❖ Kernel version and patch version MUST use exactly what is specified by the SDK
- ❖ When view Linux articles & books, must be aware of the kernel version use

How Linux OS works

- ❖ main board BIOS performs a Power On Self Test (POST) .
- ❖ Computer first check for operating system on floppy disk and on CD-ROM to ensures installation of an operating system from these devices can occur at boot time.
- ❖ After that, the computer usually checks the Master Boot Record (MBR) on the first hard disk inside the computer. The MBR might have (or point to a partition that has) a boot loader on it that can locate and execute the operating kernel .Kernel is also know as Operating System (OS)
- ❖ The kernel initializes the devices and its drivers
- ❖ The kernel mount the root filesystem
- ❖ Kernel starts the first program (or daemon) called *init*

How Linux OS works

GRUB boot loader

- ❖ Grand Unified Boot loader (GRUB) is more recent than LILO boot loader. The first major part of the GRUB boot loader (called Stage1) typical resides on the MBR.
- ❖ Stage1.5 and Stage2 , reside in the /boot/grub directory.
- ❖ GRUB stage1 simply points to GRUB Stage1.5 which loads filesystem support and proceeds to load GRUB Stage2.
- ❖ GRUB Stage2 performs the actual boot loader functions and displays a graphical boot loader screen.

```
[root@localhost grub]#  
[root@localhost grub]# pwd  
/boot/grub  
[root@localhost grub]# ls  
device.map      grub.conf      minix_stage1_5  stage2  
e2fs_stage1_5  iso9660_stage1_5  reiserfs_stage1_5  ufs2_stage1_5  
fat_stage1_5   jfs_stage1_5    splash.xpm.gz    vstafs_stage1_5  
ffs_stage1_5   menu.lst       stage1          xfs_stage1_5  
[root@localhost grub]#
```

GRUB Stage1.5 and 2.

Linux kernel Version

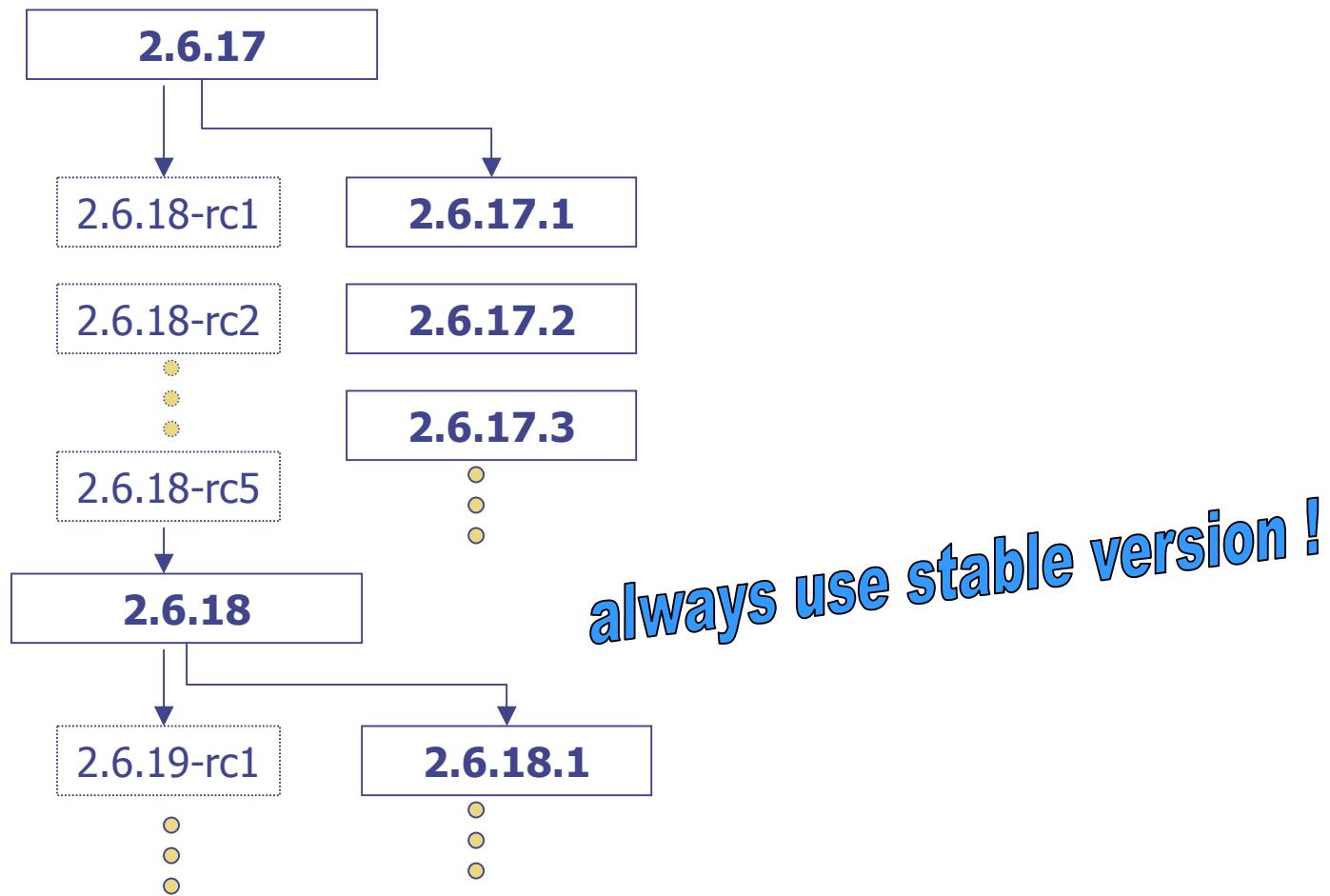
- ❖ To create your own environment with latest kernel, compiler, tools and other features, you need to re-configure and re-compile the Linux kernel
- ❖ Before Kernel 2.6, all Linux kernels has two versions
 - Development version – 2nd number is odd number
 - Release version – 2nd number is even number

kernel 2.4.xx (Redhat 8/9)

major ○ **minor** ○ **Revision #** ━ **Patch #**

Odd
Under
development

Even
Production
release


2.4.31 – OK to use

2.3.5 – if you are an Linux enthusiast

Before kernel 2.6
i.e. redhat 8/9

Linux kernel Version

- ❖ For kernel 2.6, only stable kernel is released
development version has a `-rc#` attached to the end

Linux kernel Version

After install Fedora 7 (till Sept 2007) , you will get kernel version 2.6.21-1.3194

To see kernel version , use]# **uname -rp**
]# **uname -a**

Revision and processor used

```
]# uname -rp
 2.6.21-1.3194 i686
]# uname -a
 Linux localhost.localdomain 2.6.21-1.3194 .fc7 #1 SMP Sat May 23
 22:35:01 EDT 2007 i686 i686 i386 GNU/Linux
]# uname
 Linux
```

Install a new kernel

- ❖ To download a new kernel, go to <http://www.kernel.org>

Address Go Links

Frequently Asked Questions'." data-bbox="100 330 890 530"/>

Welcome to the Linux Kernel Archives. This is the primary site for the Linux kernel source, but it has much more than just Linux kernels. [Frequently Asked Questions](#)

Protocol	Location	Protocol	Location
HTTP	http://www.kernel.org/pub/	HTTP	http://www.eu.kernel.org/pub/
FTP	ftp://ftp.kernel.org/pub/	FTP	ftp://ftp.eu.kernel.org/pub/
RSYNC	rsync://rsync.kernel.org/pub/	RSYNC	rsync://rsync.eu.kernel.org/pub/

The latest stable version of the Linux kernel is: [2.6.22.8](#) 2007-09-25 06:05 UTC [E V VI C Changelog](#)

The latest [prepatch](#) for the stable Linux kernel tree is: [2.6.23-rc8](#) 2007-09-25 00:51 UTC [B V VI C Changelog](#)

Click "F" to start download

Install a new kernel

- ❖ You will get “ linux-2.6.22.6.tar.bz2”
- ❖ To unzip to “ linux-2.6.22.6.tar “ use the following command :

]# bunzip2 linux-2.6.22.6.tar.bz2

- ❖ To untar , use the following command :

]# tar xf linux-2.6.22.6.tar

a folder called “ linux-2.6.22.6 “ is created

Install a new kernel

Steps involves rebuild a kernel:

- ❖ Create new kernel image file inside a new folder e.g. /root/<mynewkernel> to avoid overwritten of the image file in case there is problem in building.
(at the final stage of the kernel building, this folder will be removed ??? – check !)
- ❖ Go to the new kernel folder e.g. /root/linux-2.6.22....

Step1 – backup current configuration

- ❖ Copy the .config (a hidden file, use “ls –a” to view) file from the current kernel folder (...) to the folder that you want to build the new kernel. The “.config” file stores your system configuration information.

```
[root@localhost 2.6.21-1.3194.fc7-i686]#
[root@localhost 2.6.21-1.3194.fc7-i686]# pwd
/usr/src/kernels/2.6.21-1.3194.fc7-i686
[root@localhost 2.6.21-1.3194.fc7-i686]# ls -a
.  block  drivers  init  lib  Module.symvers  security
..  .config  fs  ipc  Makefile  net  sound
arch  crypto  include  kernel  mm  scripts  usr
[root@localhost 2.6.21-1.3194.fc7-i686]#
```

- ❖ Step 2 – generate configuration file ???

Run]# make gconfig (X-window base) or
make config (text-based) or
make menuconfig (text-menu-based)

Install a new kernel

Step3 – create your own version name

- ❖ Edit the Makefile file and change the EXTRAVERSION to a unique name that indicate your own customized kernel

Example : for kernel 2.6 or later

For example Kernel version **2.6.5-1.358**

VERSION = 2

PATCHLEVEL = 6

SUBLEVEL = 5

EXTRAVERSION = <put your own info>

 e.g. -1.358 - user tracking information

NAME=Affluent Albatross

```
/usr/src/linux-2.6.5-1.358/Makefile - gedit
VERSION = 2
PATCHLEVEL = 6
SUBLEVEL = 5
EXTRAVERSION = -1.358custom|
NAME=Zonked Quokka
```

A 3D text effect with the words "add new one ??" in a stylized, blocky font. The letters are colored in a gradient from orange to yellow, and the text is tilted diagonally, giving it a three-dimensional appearance.

Install a new kernel

Step 4 – Compile a new customized kernel

```
]# make bzImage
```

Step 5 – build the kernel's module

- ❖ This step make take much longer time (2 hrs for a slow PC)

```
]# make modules
```

Step 6 – install the kernel module

- ❖ Copy the newly created modules to the conventional module locations.

```
]# make modules_install
```

Step 7 – copy the new customized kernel to the /boot partition

```
]# make install
```

```
[root@localhost boot]#  
[root@localhost boot]# pwd  
/boot  
[root@localhost boot]# ls  
config-2.6.21-1.3194.fc7  lost+found  
grub  System.map  
initrd-2.6.21-1.3194.fc7.img  System.map-2.6.21-1.3194.fc7  vmlinuz  
initrd-2.6.22.9-hksim1.img  System.map-2.6.22.9-hksim1  vmlinuz-2.6.21-1.3194.fc7  
[root@localhost boot]#
```

Multiple versions in /boot

Install a new kernel

Allow to select different kernel version at start-up of Linux PC

```
# grub.conf generated by anaconda
#
# Note that you do not have to rerun grub after making changes to this file
# NOTICE: You have a /boot partition. This means that
#          all kernel and initrd paths are relative to /boot/, eg.
#          root (hd0,0)
#          kernel /vmlinuz-version ro root=/dev/VolGroup00/LogVol00
#          initrd /initrd-version.img
#boot=/dev/sda
default=1
timeout=5
splashimage=(hd0,0)/grub/splash.xpm.gz
hiddenmenu
title Fedora (2.6.22.9-hksim1)
    root (hd0,0)
    kernel /vmlinuz-2.6.22.9-hksim1 ro root=/dev/VolGroup00/LogVol00 rhgb quiet
    initrd /initrd-2.6.22.9-hksim1.img
title Fedora (2.6.21-1.3194.fc7)
    root (hd0,0)
    kernel /vmlinuz-2.6.21-1.3194.fc7 ro root=/dev/VolGroup00/LogVol00 rhgb quiet
    initrd /initrd-2.6.21-1.3194.fc7.img
```

init and Runlevel

- ❖ Kernel starts the first program (or daemon) called *init*
- ❖ The init daemon uses its configuration file **/etc/inittab** (init table) to load other daemons on the system that provide system services and ultimately allow user to login and use the system.
- ❖ The init daemon is also responsible for **unloading** daemons that are loaded in memory when the system is halt or reboot
- ❖ init daemon categorizes the system into runlevels. A runlevel defines the number and type of daemons that are loaded into memory and executed by the kernel on a particular system.
- ❖ To see the runlevel,

```
]# runlevel
```

Diagram illustrating the output of the 'runlevel' command:

- The output shows 'N 5' in red circles.
- An arrow points from the 'N' to the text 'Previous runlevel N= nothing'.
- An arrow points from the '5' to the text 'Current runlevel'.

Previous runlevel N= nothing

Default runlevel. The runlevels used by RHS are:

0 - halt (Do NOT set initdefault to this)

1 - Single user mode

2 - Multiuser, without NFS (The same as 3, if you do not have networking)

3 - Full multiuser mode

4 - unused

5 - X11

6 - reboot (Do NOT set initdefault to this)

id:5:initdefault:

System initialization.
si:/sysinit:/etc/rc.d/rc.sysinit

l0:0:wait:/etc/rc.d/rc 0
l1:1:wait:/etc/rc.d/rc 1
l2:2:wait:/etc/rc.d/rc 2
l3:3:wait:/etc/rc.d/rc 3
l4:4:wait:/etc/rc.d/rc 4
l5:5:wait:/etc/rc.d/rc 5
l6:6:wait:/etc/rc.d/rc 6

Trap CTRL-ALT-DELETE
ca:/ctrlaltdel:/sbin/shutdown -t3 -r now

When our UPS tells us power has failed, assume we have a few minutes
of power left. Schedule a shutdown for 2 minutes from now.

This does, of course, assume you have powerd installed and your

UPS connected and working correctly.

pf:/powerfail:/sbin/shutdown -f -h +2 "Power Failure; System Shutting Down"

If power was restored before the shutdown kicked in, cancel it.
pr:12345:powerokwait:/sbin/shutdown -c "Power Restored; Shutdown Cancelled"

Run gettys in standard runlevels
1:2345:respawn:/sbin/mingetty tty1
2:2345:respawn:/sbin/mingetty tty2
3:2345:respawn:/sbin/mingetty tty3
4:2345:respawn:/sbin/mingetty tty4
5:2345:respawn:/sbin/mingetty tty5
6:2345:respawn:/sbin/mingetty tty6

Run xdm in runlevel 5
x:5:respawn:/etc/X11/prefdm -nodaemon

added by HKSim 10 Oct 06 #
Run COM1 and COM2 gettys in standard runlevels #
#S0:235:respawn:/sbin/agetty -L 115200 ttyS0 vt102
#S1:235:respawn:/sbin/agetty -L 115200 ttyS1 vt102

init and Runlevel

- ❖ init and telinit (tell init) are almost the same

] # telinit <new runlevel (0 to 6)> switch to runlevel 3, also know as 's',

e.g]# telinit 3 *login as root user*

```
] # runlevel
```

53

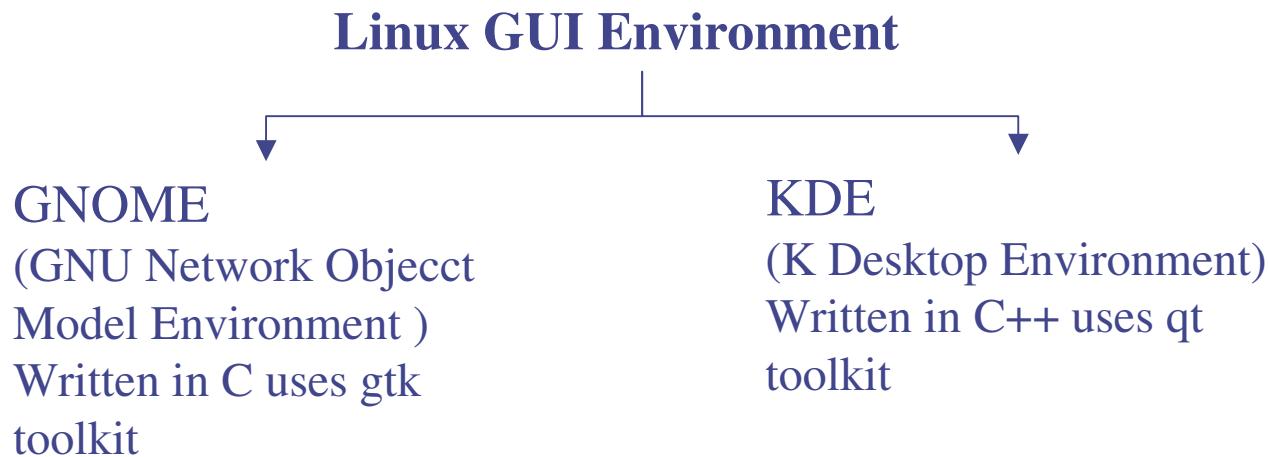
1#

Note : For embedded application, this is the way to do a software reset, **init 6** or a software stop , **init 0**

init and Runlevel

Run level	Name	
0	Halt	No daemon active in memory, ready to power off
1,s,S,single	Single user mode	Enough daemon to allow one user to login
2	Multi-user mode	Has most daemon started and allow multiple user to login & use system service
3	Extended multi-user mode	Same abilities as multi-user mode, with extra networking services started (e,g,SNMP, NFS)
4	Not use	
5	Graphical mode	Same abilities as extended multi-user mode, yet with a graphical login program called GNOME
6	Reboot	Reboot the system

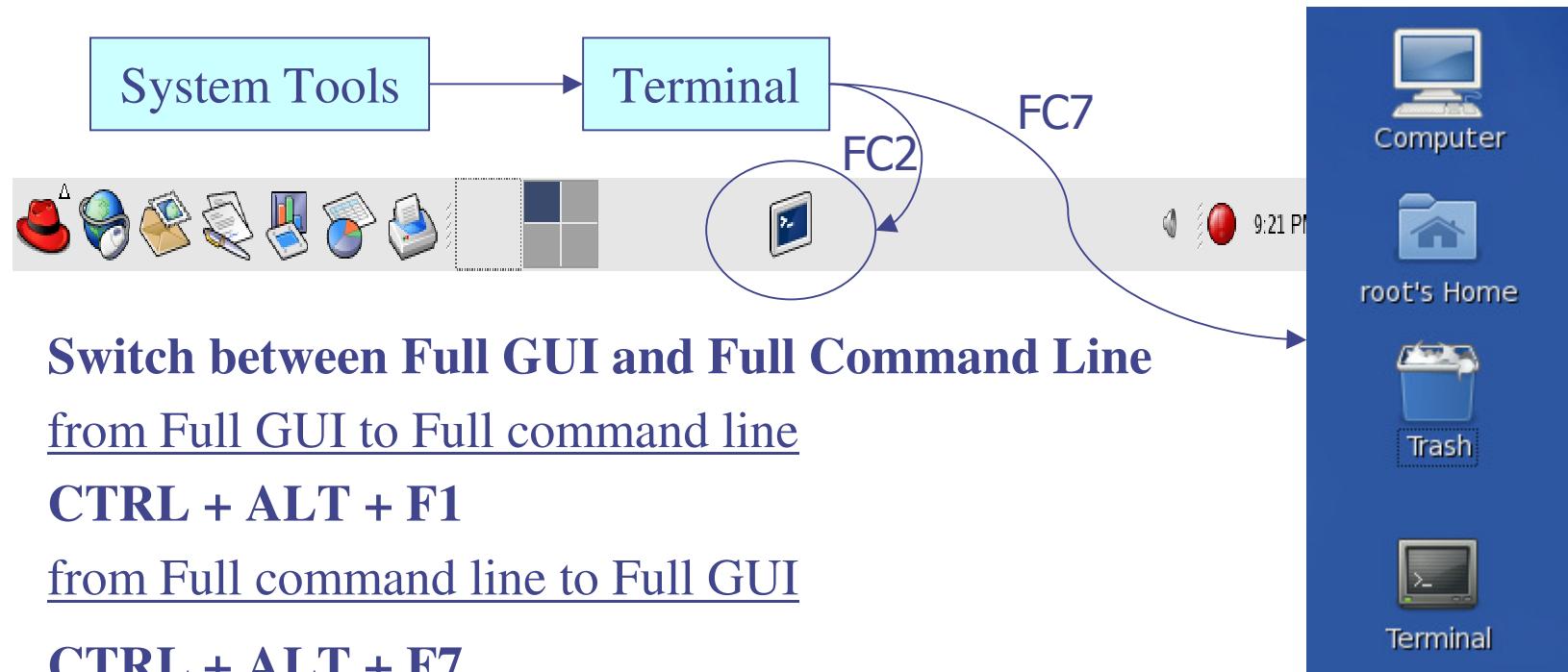
Linux User Interface


- ❖ Graphical User Interface (GUI)

- window – very famous
- Fedora Linux (catching up)

- ❖ Command Line prompt

Linux / Unix - way of life !


Window DOS – Not commonly use

2.0 Basic Commands

GUI / Command Line

- ❖ In GUI , want to access to command line , click the following selection:

- ❖ **Switch between Full GUI and Full Command Line**
from Full GUI to Full command line

CTRL + ALT + F1

from Full command line to Full GUI

CTRL + ALT + F7

Note : Login to fedora will put you in GUI mode. You can use]# init 3 to initialize to terminal mode

- ❖ **Basic Shell command format**

]<# <command> <-option> <argument>

e.g. ls -a /etc/httpd

List the content of the folder “httpd” inside the folder /etc

date / echo

- ❖ View Date

```
]# date
```

- ❖ Display what you have entered

```
]# echo Hello
```

- ❖ System variables

anything that proceeds with a \$ sign is known as system variable

e.g. \$SHELL , \$PATH (note : upper case letters)

```
]# echo my Linux path is $PATH
```

```
]# echo my path is $PATH
```

my path is

/usr/kerberos/sbin:/usr/kerberos/bin:/usr/local/sbin:/usr/local/bin:/sbin:/bin:/usr/sbin:/usr/bin:/usr/X11R6/bin:/root/bin

```
]#
```

```
]# echo my shell is $SHELL
```

```
]# echo my shell is $SHELL
```

my shell is /bin/bash

```
]#
```

date / echo

```
[root@localhost ~]#  
[root@localhost ~]# echo my shell is -> $SHELL  
bash: /bin/bash: Text file busy  
[root@localhost ~]#  
[root@localhost ~]# echo my shell is '->' $SHELL  
my shell is -> /bin/bash  
[root@localhost ~]#
```

Where is the problem ?

> Is a BASH shell Meta character ! -- see next slide

BASH shell Meta Characters

BASH shell meta characters (special characters)

\$ - shell variable

~ - home directory variable

& - back ground command execution

<, <<, >>, > - Input / Output redirect


| - pipe

* , ?, [] - shell wild cards

' \ ' - meta character quote

`` `` - command substitution

(), { } - command group

BASH shell Meta Characters

Enclose a string by a single quote to prevent Shell from interpreted as meta character / command or a black slash in front of a Meta character to prevent interpretation of the meta character.

```
]# echo 'This is my $SHELL'
```

This is my \$SHELL

```
]# echo This is my \$SHELL
```

This is my \$SHELL

```
]# echo This is my $SHELL
```

This is my /bin/bash

```
[root@localhost ~]#  
[root@localhost ~]# echo my shell is '->' $SHELL  
my shell is -> /bin/bash  
[root@localhost ~]#
```

MUST be single quote for FC7

```
[root@localhost ~]#  
[root@localhost ~]# echo this is "$SHELL"  
this is /bin/bash  
[root@localhost ~]# echo this is '$SHELL'  
this is $SHELL  
[root@localhost ~]#  
[root@localhost ~]# echo this is \$SHELL  
this is $SHELL  
[root@localhost ~]#
```

BASH shell Meta Characters

- ❖ `` (back quote characters) is use to substitute a command. Anything between back quotes is treated as another command by Shell

```
]# echo today is `date`
```

Command for date display

today is Thu Mar 1 00:56:06 EST 2007

```
]# echo "today is --->" `date`  
today is ---> Thu Mar 1 00:56:06 EST 2007  
]#
```

- ❖ Echo a \n (new line) using the -e which enable interpretation of backslash escapes

```
]# echo -e '\n\n'
```

```
[root@localhost ~]#  
[root@localhost ~]# echo '\n\n'  
\n\n  
[root@localhost ~]# echo -e '\n\n'  
}  
} Two lines  
  
[root@localhost ~]# echo -e '\n'  
}  
} one line  
[root@localhost ~]# echo -e my name is '\n' `date`  
my name is  
Thu Oct 18 12:06:32 EDT 2007  
[root@localhost ~]#
```

Help command

3 help commands : man, info, help

❖ man command

]# **man** whoami

... *display* ...

to exit man menu, enter ‘q’ at the ‘:’ sign

Find all commands that have the word “usb” in their name or description

]# **man -k** usb

❖ info command

returns an easy to read description

]# **info** whoami

❖ Help command

]# **help** echo

Shut down Linux

Not need to use option “-y”

```
]# shutdown -h 15
      ↘ halt    in 15 minutes time
      ↘
]# init 0      shutdown
```

```
]# shutdown -r +4
      ↘ Re-boot in 4 minutes time
      ↘ The + sign is optional
      ↘
]# shutdown -h 23:30      shutdown at time 23:30
```

```
]# init 6      reboot
```

```
]# shutdown -c      → cancel shutdown
```

Note : use shutdown command at back end in case you may want to cancel it . e.g.]# shutdown -h 15 &

Write Shell Script

- ❖ A shell script is program (text file) with a collection of shell commands that are executed when the program is run

myscript.sh

Remove the quote ``
and
see what happen

```
#!/bin/bash
# this is a comment statement
echo '*****'
echo '* How are you ?      *'
echo '*****'
echo Date Display
date
echo Who Display
who
echo List files
ls -F /
```

- ❖ Use text editor to create the script called myscript
- ❖ To run the script :

]# bash myscript.sh

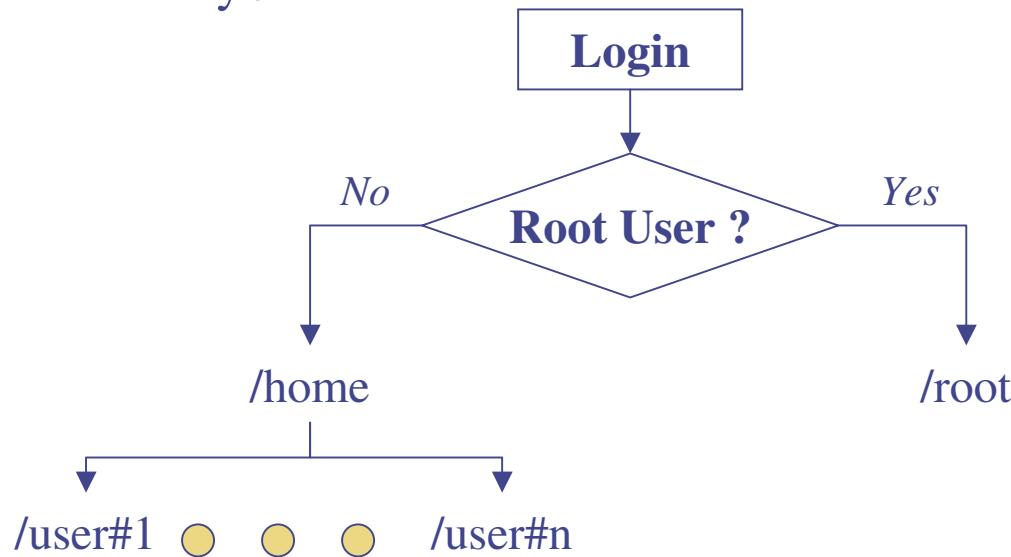
or

]# chmod 755 myscript.sh

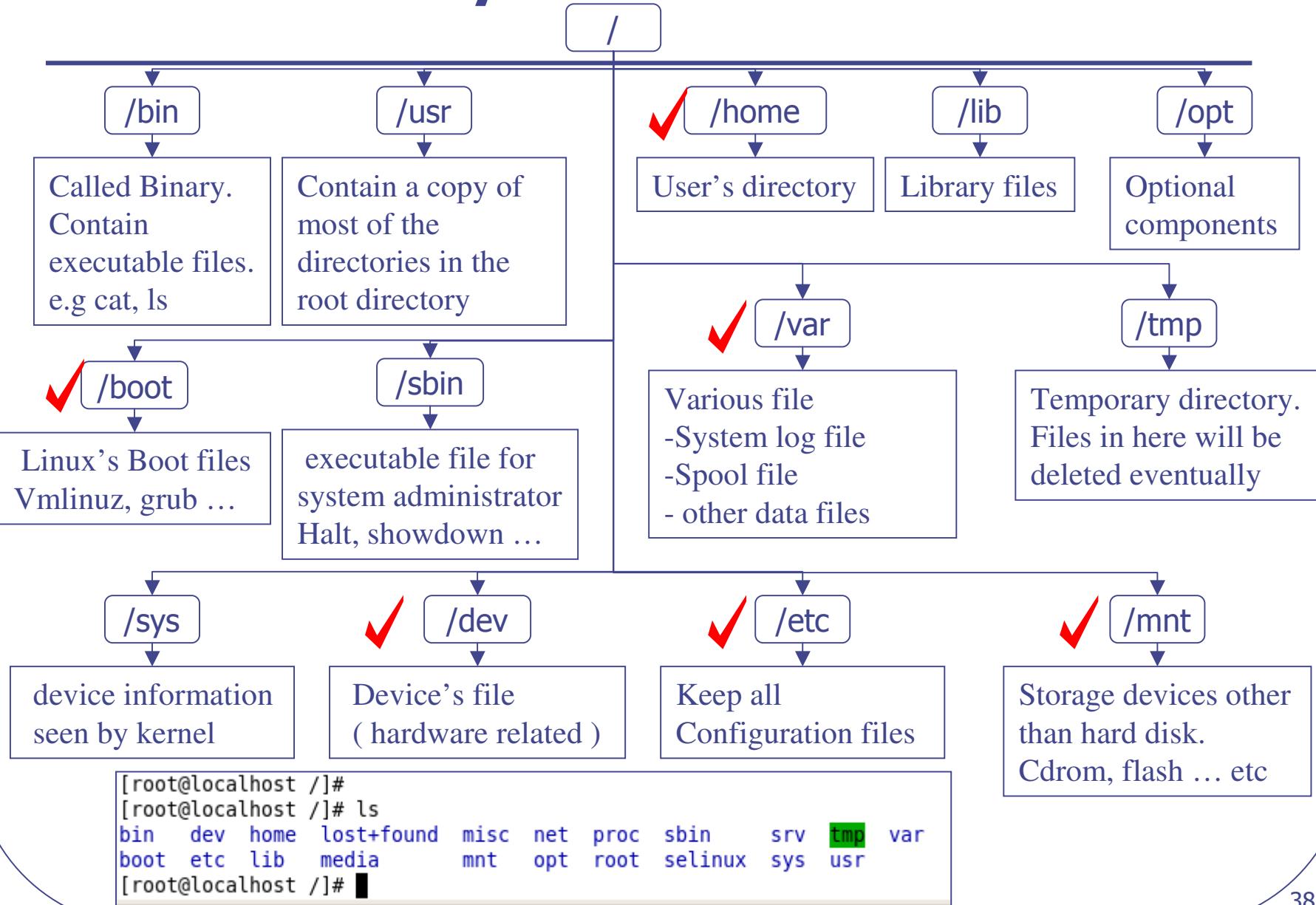
]# ./myscript.sh

- ❖ A full shell script programming has a lot more capabilities include decision making ... etc. See more detail on “Shell Script Programming”

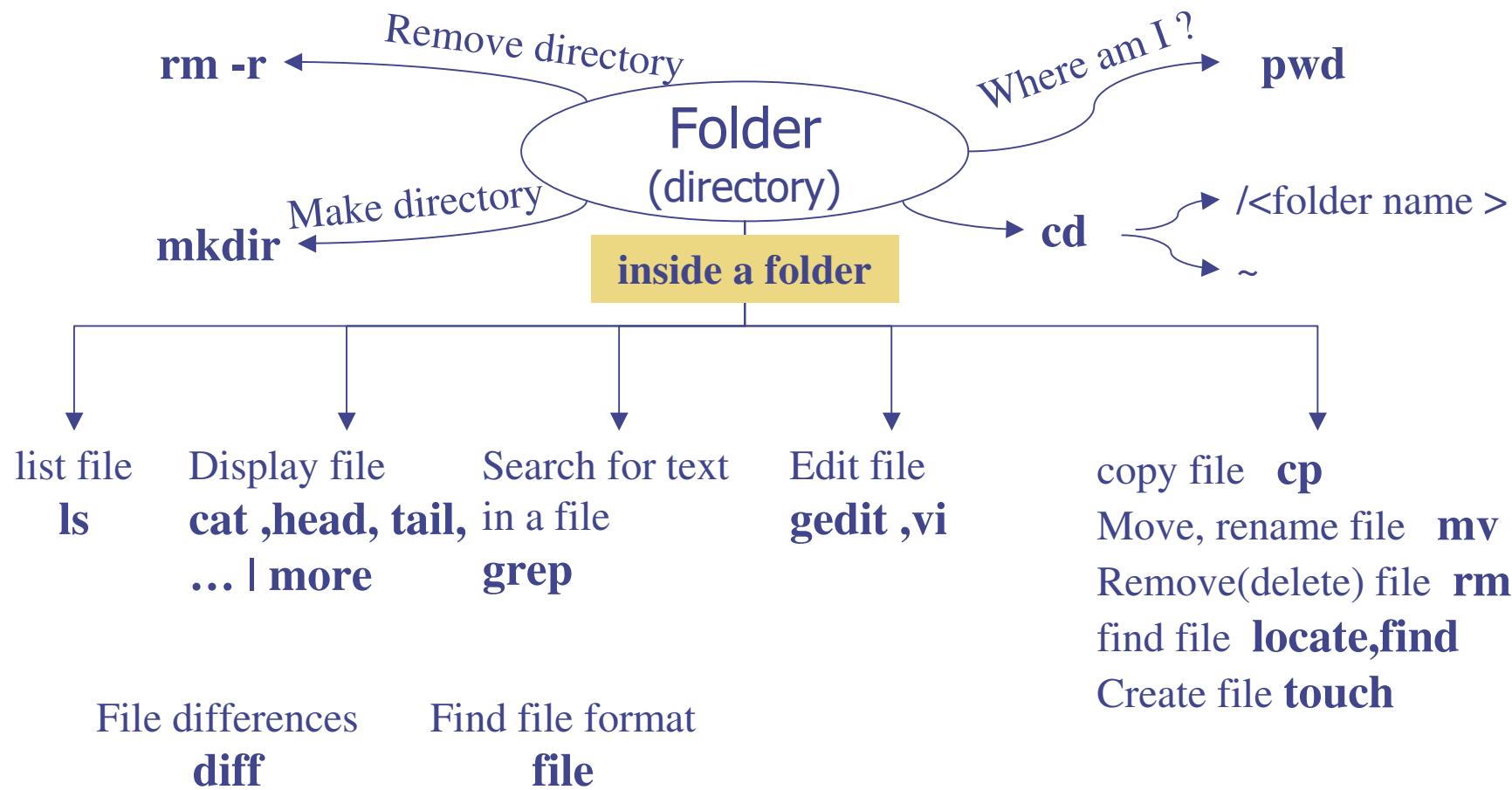
3.0 Directory & File


Directory (or Folder) in Linux

- ❖ Linux OS has NO drive letter
- ❖ Directory is also called folder. Use interchangeably.
- ❖ Linux directory system start with '/' (root or base folder)
- ❖ Absolute path – reference to the root folder e.g /etc/rc.d/init
- ❖ Relative path - do not start with a '/'
assume now in folder /etc
cd rc.d/init.d → move to the absolute folder /etc/rc.d/init
(or cd rc.d , cd init.d)


```
]# cd /
]# ls
bin  dev  home  lib      misc  opt  root  selinux  tftpboot  udev  var
boot  etc  initrd  lost+found  mnt  proc  sbin  sys      tmp    usr
/]#
```

Login Folder


- ❖ Normal user login to a Linux system will be put in home directory `/home/<your login name>`
- ❖ Root user (who has administration right) login to a Linux system will be in root directory `/root`

Key Linux Folders

Directory / File Commands Overview

Change Directory -cd

Where are you ?

]# pwd (Print/Present Working Directory)

cd (Change Directory) allow you to move from one directory to another

]# cd /home/peter go to folder /home/peter

]# cd / go to base directory

]# cd .. go to next higher directory

]# cd ../../ move two directory up

]# cd /dir1/dir2/dir3 go straight down to dir3

Linux metachar ‘~’ means go to your home directory

]# cd ~

]# cd ~peter

Change Directory - cd

Examples

move 1 level up

```
]# pwd  
/root/testfolder/manyfiles  
]# cd ../ or cd ..  
]# pwd  
/root/testfolder  
]#
```


move 2 level up

```
]# pwd  
/root/testfolder/manyfiles  
]# cd ../../..  
]# pwd  
/root  
]#
```

meta character cd

```
]# pwd  
/root  
]# cd ~john  
]# pwd  
/home/john  
]#
```

Make/Remove Directory – **mkdir/rm -r**

Create a new folder / directory

```
]# mkdir dir1          create new directory  
]# mkdir -p 1/2/3/4    create 4 layer of directory /1/2/3/4
```

Remove a folder / directory

```
]# rm -r dir1          remove files in the directory with prompt  
]# rm -rf dir1         remove files in the directory without prompt
```

note : once the folder is empty , do one more rm -r or -rf to remove the empty directory

Make/Remove Directory – mkdir/rm -r

Examples

remove directory rm -r

```
]# ls
dir1 file1 file2 file3 file4
]# rm -r dir1
rm: descend into directory `dir1'? y
rm: remove regular empty file `dir1/file2'? y
rm: remove regular empty file `dir1/file3'? y
rm: remove regular empty file `dir1/file1'? y
rm: remove regular empty file `dir1/file4'? y
rm: remove directory `dir1'? ls
]#
```

List File - ls

List the content of a folder

]# ls

]# ls -a

list all files include hidden file

]# ls -F

list files with type character append to the end

xxx@ - link file

xxx* - executable file

xxx/ - subdirectory

xxx= - socket

xxx| - pipe

xxx - text, binary or special device file

]# ls -l

long list (more information)

directory → drwxr-xr-x 2 root root 4096 Feb 17 23:10 Desktop

File type & permission Hard link File owner Group owner File size Most recent modified File name

]# ls *i*

list with wild card

List File - ls

Examples

```
]# ls
anaconda-ks.cfg Desktop install.log install.log.syslog testfolder
]#
]# ls -F
anaconda-ks.cfg Desktop/ install.log install.log.syslog testfolder/
]#
]# ls -a
.           .default_contexts .gstreamer-0.8      .recently-used
..          Desktop          .gtkrc          .rhn-applet
anaconda-ks.cfg .dmrc          .gtkrc-1.2-gnome2 .rhn-applet.conf
.bash_history  .fonts.cache-1
.bash_logout   .gconf          .ICEauthority   testfolder
.bash_profile  .gconfd         install.log      .Xauthority
.bashrc        .gnome          install.log.syslog .Xresources
.config        .gnome2         .metacity
.cshrc         .gnome2_private .nautilus
]#
```

Annotations:

- A red circle highlights the trailing slash of "testfolder/" in the output of the `ls -F` command, with an arrow pointing to the text "folder".
- A red circle highlights the file ".rhn-applet.conf" in the output of the `ls -a` command, with an arrow pointing to the text "Hidden files".
- A red circle highlights the file ".tcsSRC" in the output of the `ls -a` command, with an arrow pointing to the text "Hidden files".

List File - ls

Examples

```
[root@localhost bin]# ls -F
[root@localhost bin]# ls -F
arch*          dmesg*      ipcalc*      pgawk*      sync*
ash*          dnsdomainname@ kbd_mode*      ping*      tar*
ash.static*    doexec*      kill*       ping6*      tcsh*
aumix-minimal* domainname@ ksh*        ps*        touch*
awk@          dumpkeys*    link*       pwd*       tracepath*
basename*     echo*        ln*        red@       tracepath6*
bash*          ed*        loadkeys*    rm*        traceroute*
bash2@        egrep@      login*      rmdir*      traceroute6*
bsh@          env*        ls*        rpm*      true*
```

```
[root@localhost bin]# ls -al
total 5840
drwxr-xr-x  2 root root  4096 Mar  6 19:46 .
drwxr-xr-x 24 root root  4096 Mar  6 19:08 ..
-rwxr-xr-x  1 root root  4580 May  4 2004 arch
-rwxr-xr-x  1 root root 98388 Feb 16 2004 ash
-rwxr-xr-x  1 root root 489552 Feb 16 2004 ash.static
-rwxr-xr-x  1 root root 12784 Mar 29 2004 aumix-minimal
lrwxrwxrwx  1 root root    4 Mar  6 16:43 awk -> gawk
-rwxr-xr-x  1 root root 14756 May  4 2004 basename
-rwxr-xr-x  1 root root 593304 Mar 11 2004 bash
lrwxrwxrwx  1 root root    4 Mar  6 16:43 bash2 -> bash
lrwxrwxrwx  1 root root    3 Mar  6 16:43 bsh -> ash
-rwxr-xr-x  1 root root 18372 May  4 2004 cat
-rwxr-xr-x  1 root root 33744 May  4 2004 chgrp
-rwxr-xr-x  1 root root 33344 May  4 2004 chmod
-rwxr-xr-x  1 root root 36028 May  4 2004 chown
```

List File - ls

Examples

```
]# ls -l
total 92
-rw-r--r-- 1 root root 988 Feb 17 23:04 anaconda-ks.cfg
drwxr-xr-x 2 root root 4096 Feb 17 23:10 Desktop
drwxr-xr-x 2 root root 4096 Feb 19 15:44 hksim
-rw-r--r-- 1 root root 61164 Feb 17 23:04 install.log
-rw-r--r-- 1 root root 8557 Feb 17 23:04 install.log.syslog
drwxr-xr-x 3 root root 4096 Feb 19 15:35 testfolder
]#
```

ls with wild card

```
]# ls
file1 file2 file3
]# ls *i*
file1 file2 file3
]#
```

Copy File - cp

```
]# cp file* dir1          copy wild card to directory named dir1  
]# cp -f file1 file4      over written of file4 without prompt ?  
]# cp -r dir1 dir2        directory copy: dir1 to dir2 with prompt if dir2 exist  
]# cp file1 file2 dir2    long list ( more information )
```

normal copy file with question

```
]# cp file1 file4  
cp: overwrite `file4'? y  
]#
```

force copy file without questions

```
]# cp -f file1 file4  
]#
```

copy directory must use -r

```
]# cp -r dir1 dir2  
]# ls  
dir1 dir2 file1 file2 file3 file4  
]#
```

Move/Rename File - mv

Rename file1 to file2

```
]# mv file1 file2
```

Move files

```
]# mv file1 file2 dir1      move file1 and file2 to directory dir1
```

```
]# mv -f file1 file2      if file2 exist, no question ask.
```

```
]# ls
dir1 file1 file2 file3 file4
]# mv file1 file4
mv: overwrite `file4'? y
]# ls
dir1 file2 file3 file4
]# mv -f file2 file4
]# ls
dir1 file3 file4
]#
```

Make/Remove File – touch / rm

Create a new file

```
]# touch file1          create new file called file1  
]# touch file1 file2    create two files at time
```

Remove a file

```
]# rm file1            delete file1
```

Get File Format - file

```
]# file myfile
```

```
]# file file_number  
file_number: ASCII text  
]#
```

Find File Location - find

find

Find a file in a particular tree

```
]# find / -name myfile.c
```

find file myfile.c in the whole Linux system

```
]# find /root –name tempinfo
```

find file named tempinfo in /root folder

```
]# find / -size +5000k 2>/dev/null &
```

find file size > 1Mbytes at background

Take long time

```
]# find / -name file_number
```

```
/root/testfolder/manyfiles/dir2/file_number
```

```
]# find / -name file_number &
```

Run at background
mood

Much faster

```
]# find /root -name file_number
```

```
/root/testfolder/manyfiles/dir2/file_number
```

```
]#
```

Find File Location - locate

Locate a file or folder

Search a database for a particular file's location. If the file is just created, it may not yet updated in the database. Can force an update.

```
]# updatedb &  
      force update file name database at background mode  
]# locate tempinfo  
      locate the file called tempinfo  
]# locate rpm  
]# locate howto
```

```
]# locate tempinfo  
/root/folder2/tempinfo  
/root/folder2/tempinfo~  
]#
```

Find File Location - which

which

Search a specific file in directories that are specified in the PATH variable

```
]# which grep  
/bin/grep  
]# which myfile
```

Note :

```
]# echo my path is $PATH  
my path is  
/usr/kerberos/sbin:/usr/kerberos/bin:/usr/local/sbin:/usr/local/bin:/sbin:/bin:/usr/s  
bin:/usr/bin:/usr/X11R6/bin:/root/bin  
]#
```

Link File/Directories - ln

link

`ln -s <file/folder to be linked> <link file/folder>` Link files or directories

-s means soft link

```
]# ln -s /mnt /my_link
```

```
]# ln /mnt /root/my_link
ln: `/mnt': hard link not allowed for directory
```

```
]# ln -s /mnt /root/my_link
]# ls
anaconda-ks.cfg  hksim      install.log.syslog  testfolder
Desktop          install.log  my_link
]# ls my_link
mnt
]#
```

Display File's Content - cat

cat

]<# cat /<folder path>/myfile	display the text file , myfile
]<# cat /etc/passwd more	display large text file in control manner

```
dir2]# cat /etc/passwd | more
root:x:0:0:root:/root:/bin/bash
bin:x:1:1:bin:/bin:/sbin/nologin
daemon:x:2:2:daemon:/sbin:/sbin/nologin
...
--More--
```

Display File's Content – head / tail

head

```
]# head myfile  
]# head -n15 myfile
```

display top 10 lines of the file (default)
display top 15 lines of the file

tail

```
]# tail myfile  
]# tail -n20 myfile
```

display last 10 lines of the file
display last 20 lines of the file

dir2]# head file_number

1
2
3
4
5
6
7
8
9
10

Actual file content

dir2]# cat file_number

1
2
3
4
5
6
7
8
9
10
11
12

dir2]# tail file_number

3
4
5
6
7
8
9
10
11
12

String Search in File - grep

grep

print the line from a file or input stream that match the expression
grep “<string to search>” <filename>

```
]# grep “number games” file_number
```

```
]# grep -5 “number games” file_number
```

Display +/- 5 line of
the item found

Linux file & Extension

❖ File type

Text , Binary, Executable

Directory file, Linked file, Special device file

Name pipes and socket

❖ File name

start with alpha numeric character, underscore (_), dash (-) and period (.)

maximum 255 character

file starts with a period (.) is a hidden file

Linux file & Extension

- ❖ configuration file (text file)

.conf, .cfg - configuration

- ❖ Archive / Compress file

.tar – archive file

.gz, .bzz, .z – compressed file

.tar.gz , tgz , .tar.bzz, .tar.z – compressed archive file

- ❖ Shell Script file (Batch file)

.sh – shell script

- ❖ Web Programming file

.html, htm - Hyper Text Markup Language

.pl - PEAL (Practical Extraction and Report Language)

Linux file & Extension

❖ Programming files

.c - c program

.cc, .cpp - c++ file

.so - share Object (programming library file)

.o - compiled object file

❖ Text file

.txt - text file

❖ Others

.jpg, .jpeg, .png, tiff, .xpm , .gif - image binary file

.tcl - TCL (Tool Command Language) program

.ps - file formatted for printer with post script

File Ownership - chmod

- ❖ When a file is created by an user, the user name and primary group automatically becomes the owner and group of the file
- ❖ View user name , enter]# whoami
- ❖ View group membership name , enter]# groups
- ❖ Every file and directory on a Linux file system contain information regarding 3 permissions : read, write , execute each of the 3 categories : user (owner), group (group owner) and others (every one) can be of different permission to a file or directory
- ❖ File ownership is important when you have a program to be executed freely or a data file to collect/append data

```
mnt]# whoami
root
mnt]# groups
root bin daemon sys adm disk wheel
mnt]#
```

File Ownership - chmod

Structure of a file permission

rw <small>x</small>		rw <small>x</small>		rw <small>x</small>
user		group		others
421		421		421

Binary Weighting factor

1 = has the permission
0 = no permission

r - read , w - write , x - execute

110 – has read, has write and no execute permission
101 – has read, no write and has execute permission

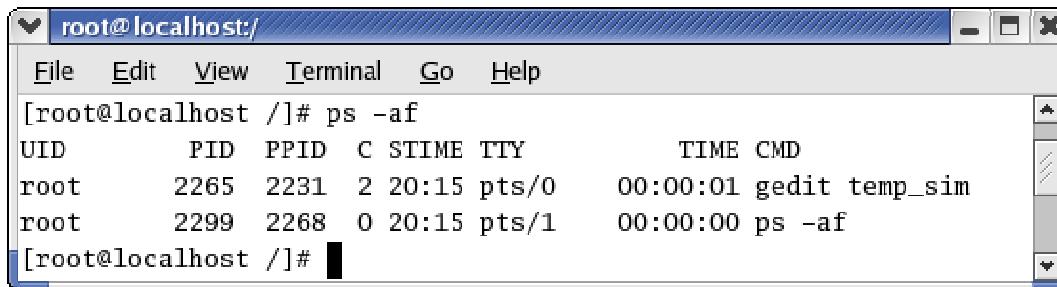
755(decimal) - user rwx, group r_x, other r_x

777(decimal) – user/group/other all has rwx permission

To change the permission , use

❖]# chmod 755 myfile

chmod – change mode

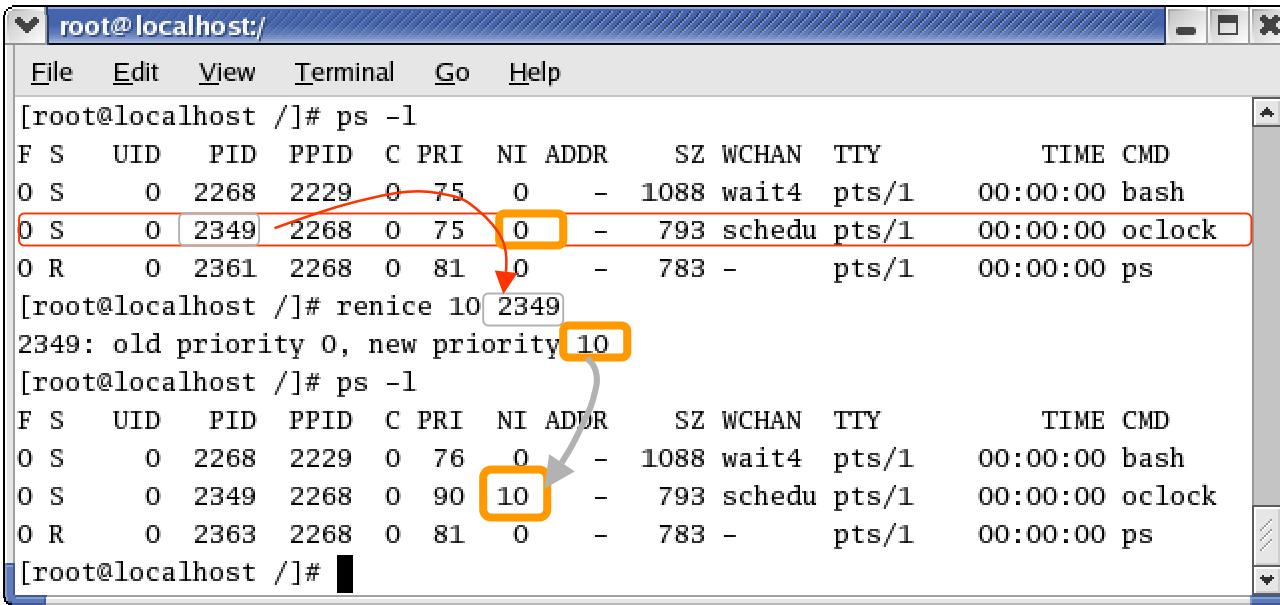

4.0 Process

Process & PID

- ❖ Multi-tasking OS , like Linux, allow many programs run at once. Each instance of a running program constitutes a process
- ❖ A running process consists of program code, variables, file operation and an environment. System share code, libraries among processes
- ❖ Each process is allocated a unique number called process identifier or PID.
- ❖ A process has its own stack space for local variables in functions and for controlling function call and return. A process must maintain its own program counter, which keep track of program execution.

]# ps -af

to see what user process is running

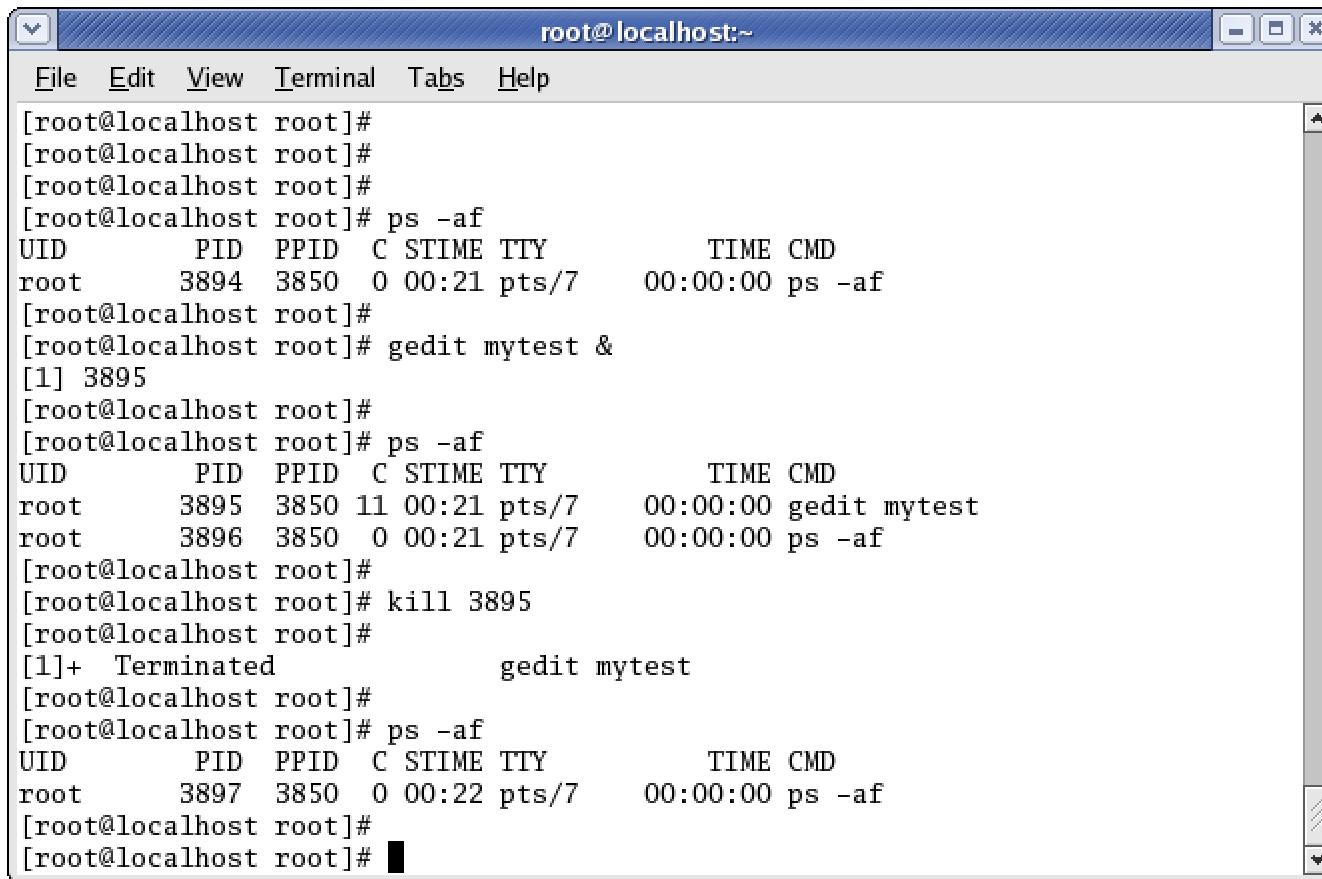


The screenshot shows a terminal window with a blue title bar containing the text 'root@localhost:/' and a small heart icon. The window has a standard window frame with minimize, maximize, and close buttons. The menu bar includes 'File', 'Edit', 'View', 'Terminal', 'Go', and 'Help'. The command prompt is '[root@localhost /]#'. The output of the 'ps -af' command is displayed in a table format:

UID	PID	PPID	C	STIME	TTY	TIME	CMD
root	2265	2231	2	20:15	pts/0	00:00:01	gedit temp_sim
root	2299	2268	0	20:15	pts/1	00:00:00	ps -af

Parent Process & Priority

- ❖ To get the system process :
\$ ps -ax try it out
- ❖ Each process is started by another process called parent process. The process so started is known as a child process
- ❖ Linux uses a process scheduler to decide which process will receive the next time slice. It does this using the process priority. Processes with a high priority get to run more often.


The screenshot shows a terminal window with the title 'root@localhost:/'. The window contains the following text:

```
[root@localhost /]# ps -1
F S  UID  PID  PPID  C PRI  NI ADDR      SZ WCHAN  TTY      TIME CMD
0 S  0  2268  2229  0 75   0 - 1088 wait4  pts/1    00:00:00 bash
0 S  0  2349  2268  0 75   0 -  793 schedu  pts/1    00:00:00 oclock
0 R  0  2361  2268  0 81   0 -  783 -      pts/1    00:00:00 ps
[root@localhost /]# renice 10 2349
2349: old priority 0, new priority 10
[root@localhost /]# ps -1
F S  UID  PID  PPID  C PRI  NI ADDR      SZ WCHAN  TTY      TIME CMD
0 S  0  2268  2229  0 76   0 - 1088 wait4  pts/1    00:00:00 bash
0 S  0  2349  2268  0 90   10 -  793 schedu  pts/1    00:00:00 oclock
0 R  0  2363  2268  0 81   0 -  783 -      pts/1    00:00:00 ps
[root@localhost /]#
```

The terminal window has a blue header bar and a scroll bar on the right. The text is in a monospaced font. A red box highlights the first two lines of the first ps -1 command. An orange box highlights the '10' in the 'PRI' column of the second line of the ps -1 command. A red arrow points from the red box to the orange box. A grey arrow points from the orange box to the '10' in the 'PRI' column of the second line of the second ps -1 command.

Kill a Process

- ❖ To stop a process use]# kill <process ID>

The screenshot shows a terminal window with a blue title bar and a white body. The title bar says "root@localhost:~". The window contains the following text:

```
root@localhost root]#
root@localhost root]#
root@localhost root]#
root@localhost root]# ps -af
UID      PID  PPID  C STIME TTY          TIME CMD
root      3894  3850  0 00:21 pts/7    00:00:00 ps -af
[root@localhost root]#
[root@localhost root]# gedit mytest &
[1] 3895
[root@localhost root]#
[root@localhost root]# ps -af
UID      PID  PPID  C STIME TTY          TIME CMD
root      3895  3850  11 00:21 pts/7   00:00:00 gedit mytest
root      3896  3850  0 00:21 pts/7   00:00:00 ps -af
[root@localhost root]#
[root@localhost root]# kill 3895
[root@localhost root]#
[1]+  Terminated                  gedit mytest
[root@localhost root]#
[root@localhost root]# ps -af
UID      PID  PPID  C STIME TTY          TIME CMD
root      3897  3850  0 00:22 pts/7   00:00:00 ps -af
[root@localhost root]#
[root@localhost root]#
```

Important Experience

- ❖ If you are developing a program that may cause hang on your Linux operating system, it is good to run the program at the background. This is because if your program go into an unexpected looping, you can still execute “kill” command to stop the program.
This is important when your program is set to auto-execute mode when the embedded hardware device is powered up

```
]# ./myprogram &  
..... Hang ....  
]# ps -af    to see the PID of “myprogram”  
]# kill <myprogram’s PID>
```

Note : If you forget to run your program at background mode and your program hang-up your embedded system and no way to stop , you have to load the factory default and reload all your previous program

5.0 Hardware Devices

Linux Devices

- ❖ Devices such as disk, terminal and serial port ... etc on a Linux are represented by a file called Device file
- ❖ Device file are found in folder **/dev**
- ❖ Each device file specifies how data should be transferred to and from the device
- ❖ Two data transfer methods

Character device

information is transferred character by character to and from the device

e.g. serial port

Block device

information is transferred one block at a time by using physical memory to buffer the transfer. Block devices are : floppy drive, CRDOM , hard disk ...etc

Linux Devices

Command device files

- ❖ Floppy

/dev/fd0 /dev/fd1

- ❖ IDE Hard disk

/dev/hda1 - 1st partition on 1st IDE (preliminary master)

/dev/hdb1 - 1st partition on 2nd IDE (preliminary slave)

/dev/hdc1 - 1st partition on 3rd IDE (secondary master)

/dev/hdd1 - 1st partition on 4th IDE (secondary slave)

- ❖ SCSI Hard disk

/dev/sda1 - 1st primary partition on 1st SCSI hard drive

/dev/sdb1 - 1st primary partition on 2nd SCSI hard drive

- ❖ USB memory stick

/dev/sda1 - treated as SCSI drive

Linux Devices

- ❖ Local terminals

/dev/tty1 /dev/tty2

- ❖ Serial port

/dev/ttyS0 /dev/ttyS1

- ❖ Line printer

/dev/lp0 /dev/lp1

- ❖ Nothing

/dev/null data send to this device will be discarded

- ❖ SCSI tape drive

/dev/st0

- ❖ USB devices

/dev/usb/*

I/O address :

com1	3f8 – 3ff
com2	2f8 – 2ff
com3	3e8 - 3ef
com4	2e8 – 2ef
LPT1	378 – 37f
LPT2	278 – 2ef

Linux Devices

❖ Linux device listing

```
][# ls -l /dev/hda1 /dev/hda2 /dev/hdc1 /dev/hdd1
```

brw-rw----	1	root	disk	3,	1	Feb	23	2004	/dev/hda1	Major number	Minor number
brw-rw----	1	root	disk	3,	2	Feb	23	2004	/dev/hda2		
brw-rw----	1	root	disk	22,	1	Feb	23	2004	/dev/hdc1		
brw-rw----	1	root	disk	22,	65	Feb	23	2004	/dev/hdd1		

Major number

Point to the device driver for the device in the Linux kernel. Different device with the same type can share the same major number

Minor number

Indicates the particular device itself.

e.g 1st floppy drive will have different minor number than the 2nd floppy drive

Linux Devices

```
dev]# ls -l fd0 ttyS0  tty1  lp0  sda1  usb
```

brw-rw----	1	root	floppy	2,	0	Feb 23	2004	fd0
crw-rw----	1	root	lp	6,	0	Feb 23	2004	lp0
brw-----	1	root	root	8,	1	Feb 23	2004	sda1
crw-----	1	root	root	4,	1	Feb 20	15:57	tty1
crw-rw----	1	root	uucp	4,	64	Feb 23	2004	ttyS0

```
usb:
```

```
total 0
```

```
...
```

crw-----	1	root	root	180,	48	Feb 23	2004	scanner0
----------	---	------	------	------	----	--------	------	----------

crw-----	1	root	root	180,	49	Feb 23	2004	scanner1
----------	---	------	------	------	----	--------	------	----------

```
...
```

crw-----	1	root	root	188,	0	Feb 23	2004	ttyUSB0
----------	---	------	------	------	---	--------	------	---------

crw-----	1	root	root	188,	1	Feb 23	2004	ttyUSB1
----------	---	------	------	------	---	--------	------	---------

```
...
```

```
dev]#
```

Linux Devices

MAKDEV

Use to re-create the device

```
]# /dev/MAKDEV fd0
```

mknod

Use to re-create the device if you know the type, major and minor number

```
]# mknod /dev/fd0 b 2 0
```

```
root]# rm -f /dev/fd0
root]# ls -l /dev/fd0
ls: /dev/fd0: No such file or directory
root]# /dev/MAKDEV fd0
root]# ls -l /dev/fd0
brw-rw---- 1 root floppy 2, 0 Feb 20 21:22 /dev/fd0
root]#
```

Linux Devices

- ❖ To see a list of devices that are currently used on the system and their major number, use

```
]# cat /proc/devices
```

Character devices:

1	mem
4	/dev/vc/0
4	tty
4	ttyS
5	/dev/tty
5	/dev/console
5	/dev/ptmx
6	lp
...	

Block devices:

1	ramdisk
2	fd
3	ide0
8	sd
9	md
22	ide1
65	sd
...	

Major number

Linux SWAP & File Format

SWAP memory (virtual memory)

- ❖ Temporary storage space to store information that normally reside in the physical memory (RAM)
- ❖ At least the size of the physical RAM

File format in Linux

- ❖ iso9600 – CDROM file system
- ❖ ext2 – traditional filesystem still used on linux computer
- ❖ Vfat (Virtual File Allocation Table)- compatible with the FAT filesystem. Recognized by both window OS and Linux OS
- ❖ ext3 (or REISER) filesystem
 - much more robust then ext2 & vfat
 - support Journaling

REISER is the default filesystem for SUSE, Lindows, FTOSX, Libranet ... etc

Journaling - Keep track of information written to the hard drive in a journal such that the system can retrace the steps the system took place prior to any disruption of a file transfer process , for example

Mounting of Devices

- ❖ Mounting

when a device is attached to a certain directory on the directory tree, this directory is called a mount point. The process of mounting a device to a directory tree is called mounting. Any existing directory can be a mounting point

- ❖ Mounting process can be automatic (auto-detect) or done manually using “mount” command

in fedora, mounting of standard devices are carry out automatically and are shown in the /mnt directory :

/mnt/floppy	- floppy drice
/mnt/cdrom	- CD-ROM
/mnt/flash	- USB memory stick

default

Mounting of Devices

- ❖ The following methods are used to view current mounted device :
]# cat /etc/fstab - file system table
]# cat /etc/mtab - mount table
- ❖ Before a device is mounted, it must be formatted to a file system using command mkfs (make file system)
]# mkfs -t ext2 /dev/fd0 format floppy to type ext2
or]# mkfs /dev/fd0 default – ext2
]# mkfs -t vfat /dev/fd0 format floppy to vfat file system

Mounting of Devices

- ❖ Display current mounted command

```
]# mount      - same as  cat /etc/mtab
```

...

/dev/hda1 on **/** type ext3 (rw)

... → Root file directory

- ❖ At boot time, the /etc/fstab is used to mount all the available devices.
to mount all the file system in the /etc/fstab file that intended at boot time,
use]# mount -a

- ❖ Format for mount command

mount -t <type> <device> <mount point >

fuser -u < mount point > - see who are the users using the device

umount < mount point > or umount <device>

Mounting of USB Memory Stick

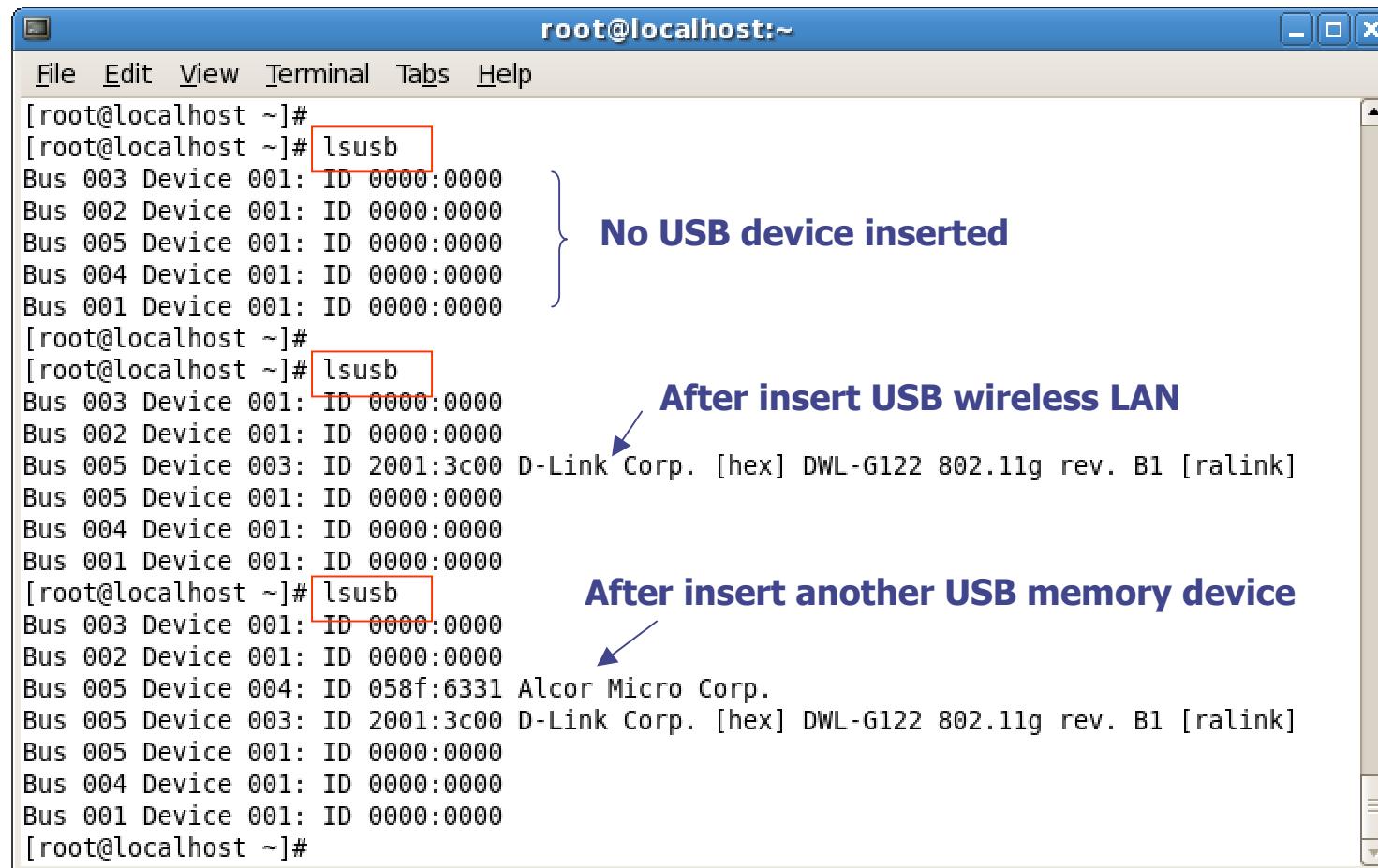
- ❖ Mount an USB memory stick to a customer folder called /root/myusb

```
]# mount -t vfat /dev/sda1 /root/myusb  
]# ls /root/myusb
```

- ❖ To un-mount the USB stick use :

```
]# umount /root/myusb
```

some times the system will not allow you to un-mount. It will reply that device is busy


- ❖ To see who is using the device :

```
]# fuser -u /root/myusb
```

- ❖ List all usb device registered (recognize)

Mounting of USB Memory Stick

- ❖ List all usb device registered (recognize)

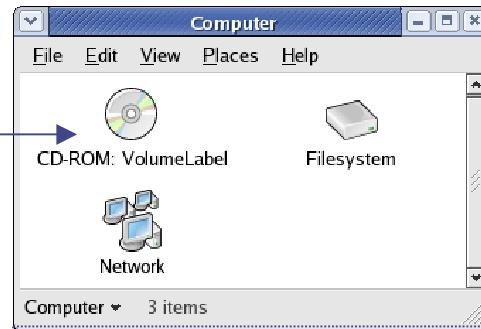

```
root@localhost:~# lsusb
[red box around lsusb]
Bus 003 Device 001: ID 0000:0000
Bus 002 Device 001: ID 0000:0000
Bus 005 Device 001: ID 0000:0000
Bus 004 Device 001: ID 0000:0000
Bus 001 Device 001: ID 0000:0000
[red box around lsusb]
Bus 003 Device 001: ID 0000:0000
Bus 002 Device 001: ID 0000:0000
Bus 005 Device 003: ID 2001:3c00 D-Link Corp. [hex] DWL-G122 802.11g rev. B1 [ralink]
Bus 005 Device 001: ID 0000:0000
Bus 004 Device 001: ID 0000:0000
Bus 001 Device 001: ID 0000:0000
[red box around lsusb]
Bus 003 Device 001: ID 0000:0000
Bus 002 Device 001: ID 0000:0000
Bus 005 Device 004: ID 058f:6331 Alcor Micro Corp.
Bus 005 Device 003: ID 2001:3c00 D-Link Corp. [hex] DWL-G122 802.11g rev. B1 [ralink]
Bus 005 Device 001: ID 0000:0000
Bus 004 Device 001: ID 0000:0000
Bus 001 Device 001: ID 0000:0000
[red box around lsusb]
```

No USB device inserted

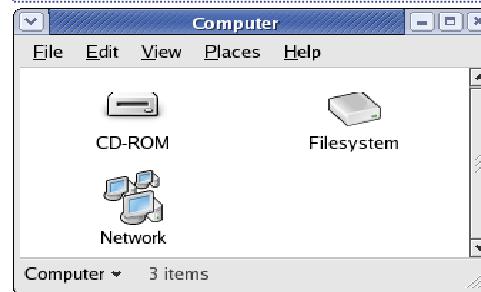
After insert USB wireless LAN

After insert another USB memory device

Mounting of CDROM


Insert CD to cdrom drive

Auto-detect


View the current file system table /etc/fstab

At command prompt,
]# umount /dev/cdrom

At command prompt,
]# mount -t iso9660 /dev/cdrom /mnt/cdrom
mount: block device /dev/cdrom is write-protected, mounting read-only


```
[root@localhost root]# cat /etc/fstab
...
/dev/hda3      swap      swap
defaults        0 0
/dev/cdrom      /mnt/cdrom  df,iso9660
noauto,owner,kudzu,ro 0 0
```


To eject the CD,
]# eject /dev/cdrom

File System Monitoring

- ❖ Monitor file system

```
]# df -h
```

Human readable format

```
]# df -h
Filesystem      Size  Used  Avail Use%  Mounted on
/dev/hdc2        37G  9.5G  25G  28%   /
/dev/hdc1        97M  6.0M  86M  7%    /boot
none            110M  0     110M  0%    /dev/shm
/dev/sda1        244M 239M  5.1M  98%   /mnt/flash
]#
```

- ❖ View directory with size

```
]# du -sh /root
```

s – size
h – human readable

```
]# du -sh /root
3.1G  /root
]#
```

File System Monitoring

- ❖ Print out latest kernel message to see some of the devices

```
]# dmesg
```

or

```
]# dmesg | grep eth0
```


Display kernel message . Pipe the output through grep command that display the kernel message with string “eth0”

6.0 FAQ (Engineering)

Network - FAQ

- ❖ How to check which NIC(Network Interface Card) is ready ? ifconfig -a
- ❖ How to temporary change NIC's parameters ?
- ❖ How to configure NIC permanently ?
- ❖ How to re-initialized NIC ?
- ❖ How to know NIC capability : ethtool <eth0/1>

Network - FAQ

How to Check which NIC is ready

]# ifconfig -a

```
eth0  Link encap:Ethernet HWaddr 00:14:85:3A:A6:3D
      inet addr:10.20.100.89 Bcast:10.20.100.255 Mask:255.255.255.0
      inet6 addr: fe80::214:85ff:fe3a:a63d/64 Scope:Link
            UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
            RX packets:76 errors:0 dropped:0 overruns:0 frame:0
            TX packets:39 errors:0 dropped:0 overruns:0 carrier:0
            collisions:0 txqueuelen:1000
            RX bytes:9015 (8.8 Kb) TX bytes:3408 (3.3 Kb)
      Interrupt:10 Base address:0xa400
```

eth0 is present and working- has IP address

```
eth1  Link encap:Ethernet HWaddr 00:10:4B:37:8C:BB
      BROADCAST MULTICAST MTU:1500 Metric:1
      RX packets:0 errors:0 dropped:0 overruns:0 frame:0
      TX packets:4 errors:0 dropped:0 overruns:0 carrier:0
      collisions:0 txqueuelen:1000
      RX bytes:0 (0.0 b) TX bytes:308 (308.0 b)
      Interrupt:11 Base address:0x7000
```

eth1

eth1 is present but NOT working- no IP address.

Note : eth1 is disconnected from the Ethernet Switch

Network - FAQ

How to temporary change NIC's parameters ?

- ❖ NIC's parameters can be temporary change by using ifconfig
ifconfig eth0 10.20.100.88 netmask 255.255.255.0 **up**

Activate the interface
for new setting

Network - FAQ

How to configure NIC permanently ?

- ❖ In fedora core 2, to setup NIC permanently, go to

Note : in A-LimEmb is
/etc/conf.d/net.eth0 or
net.eth1

/etc/sysconfig/network-scripts/ifcfg-eth0 for 1st LAN port on Linux PC
/etc/sysconfig/network-scripts/ifcfg-eth1 for 2nd LAN port on Linux PC

/etc/sysconfig/network-scripts/ifcfg-eth0

```
#Realtek|RTL-8139/8139C/8139C+
DEVICE=eth0
BOOTPROTO=static
HWADDR=00:14:85:3A:A6:3D
ONBOOT=yes
TYPE=Ethernet
NETMASK=255.255.255.0
IPADDR=10.20.100.89
USERCTL=no
PEERDNS=yes
IPV6INIT=no
GATEWAY=10.20.100.10
```

/etc/sysconfig/network-scripts/ifcfg-eth1

```
# VIA Technologies|VT6105 [Rhine-III]
DEVICE=eth1
ONBOOT=yes
BOOTPROTO=dhcp
HWADDR=00:10:4B:37:8C:BB
NETMASK=255.255.255.0
IPADDR=10.20.100.90
USERCTL=no
PEERDNS=no
TYPE=Ethernet
IPV6INIT=no
GATEWAY=10.20.100.10
```

Network - FAQ

How to re-initialize NIC

- ❖ NIC can be re-initialized any time using ifstop <NIC name>, and ifup <NIC name >

```
]# ifstop eth1
```

```
]# ifup eth1
```

Determining IP information for eth1...SIOCADDR: File exists
done.

```
]#
```

```
]# ifconfig -a  
...
```

```
eth1      Link encap:Ethernet HWaddr 00:10:4B:37:8C:BB  
          inet addr:10.20.100.54 Bcast:10.20.100.255 Mask:255.255.255.0  
          inet6 addr: fe80::210:4bff:fe37:8cbb/64 Scope:Link  
          UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1  
          RX packets:3 errors:0 dropped:0 overruns:0 frame:0  
          TX packets:10 errors:0 dropped:0 overruns:0 carrier:0  
          collisions:0 txqueuelen:1000  
          RX bytes:893 (893.0 b) TX bytes:1028 (1.0 Kb)  
          Interrupt:11 Base address:0x7000
```

eth1 used dhcp mode, IP
address assigned by the
DHCP server on the network

Network - FAQ

How to know NIC capability : ethtool <eth0/1>

]# ethtool eth0 - *Linked*

Settings for eth0:

Supported ports: [TP MII]

Supported link modes: 10baseT/Half 10baseT/Full
100baseT/Half 100baseT/Full

Supports auto-negotiation: Yes

Advertised link modes: 10baseT/Half 10baseT/Full
100baseT/Half 100baseT/Full

Advertised auto-negotiation: Yes

Speed: 100Mb/s

Duplex: Full

Port: MII

PHYAD: 32

Transceiver: internal

Auto-negotiation: on

Supports Wake-on: pumbg

Wake-on: d

Current message level: 0x00000007 (7)

Link detected: yes

]#

]# ethtool eth1 - *NOT Linked*

Settings for eth1:

Supported ports: [TP MII]

Supported link modes: 10baseT/Half 10baseT/Full
100baseT/Half 100baseT/Full

Supports auto-negotiation: Yes

Advertised link modes: 10baseT/Half 10baseT/Full
100baseT/Half 100baseT/Full

Advertised auto-negotiation: Yes

Speed: 10Mb/s

Duplex: Half

Port: MII

PHYAD: 1

Transceiver: internal

Auto-negotiation: on

Current message level: 0x00000001 (1)

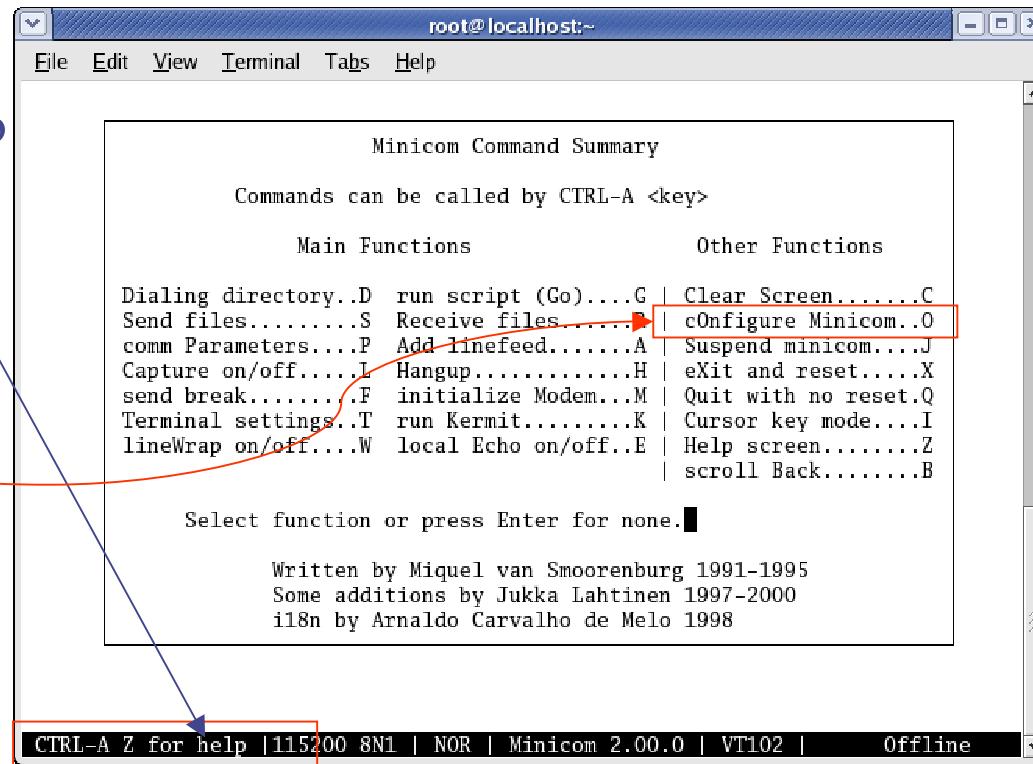
Link detected: no

]#

No link default setting, lowest
speed and half duplex

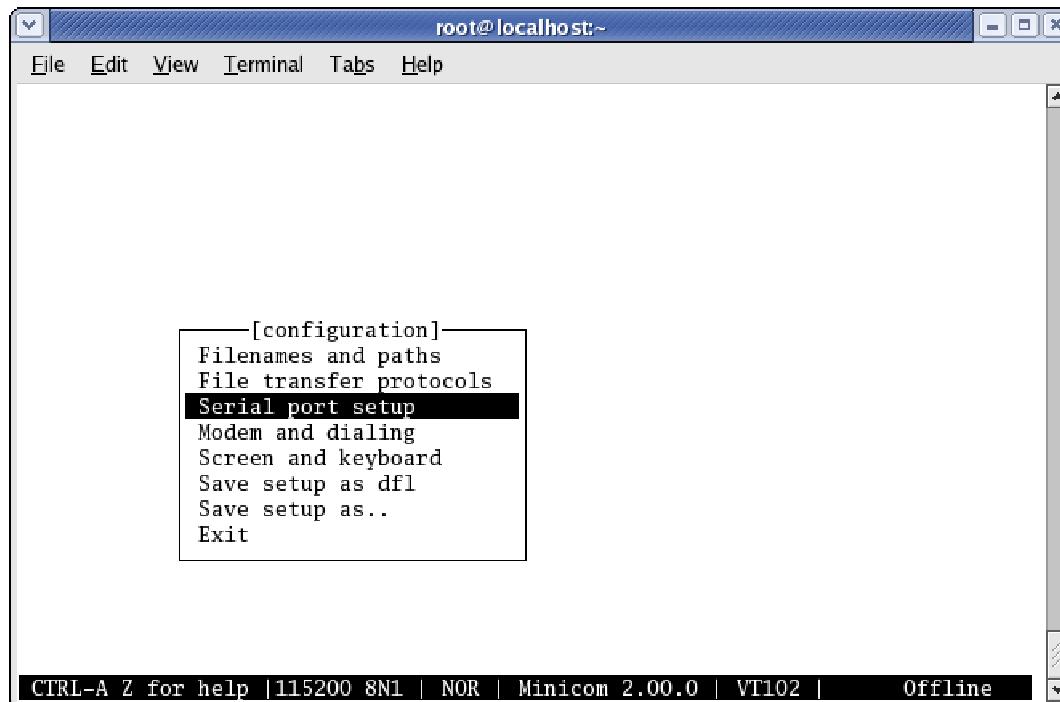
Serial Port Utility (minicom) - FAQ

- ❖ What is serial port utility in Linux (like hyper-terminal in Window) ?
minicom
- ❖ How to set minicom for just serial port application ?]# minicom


Serial Port Utility (minicom) - FAQ

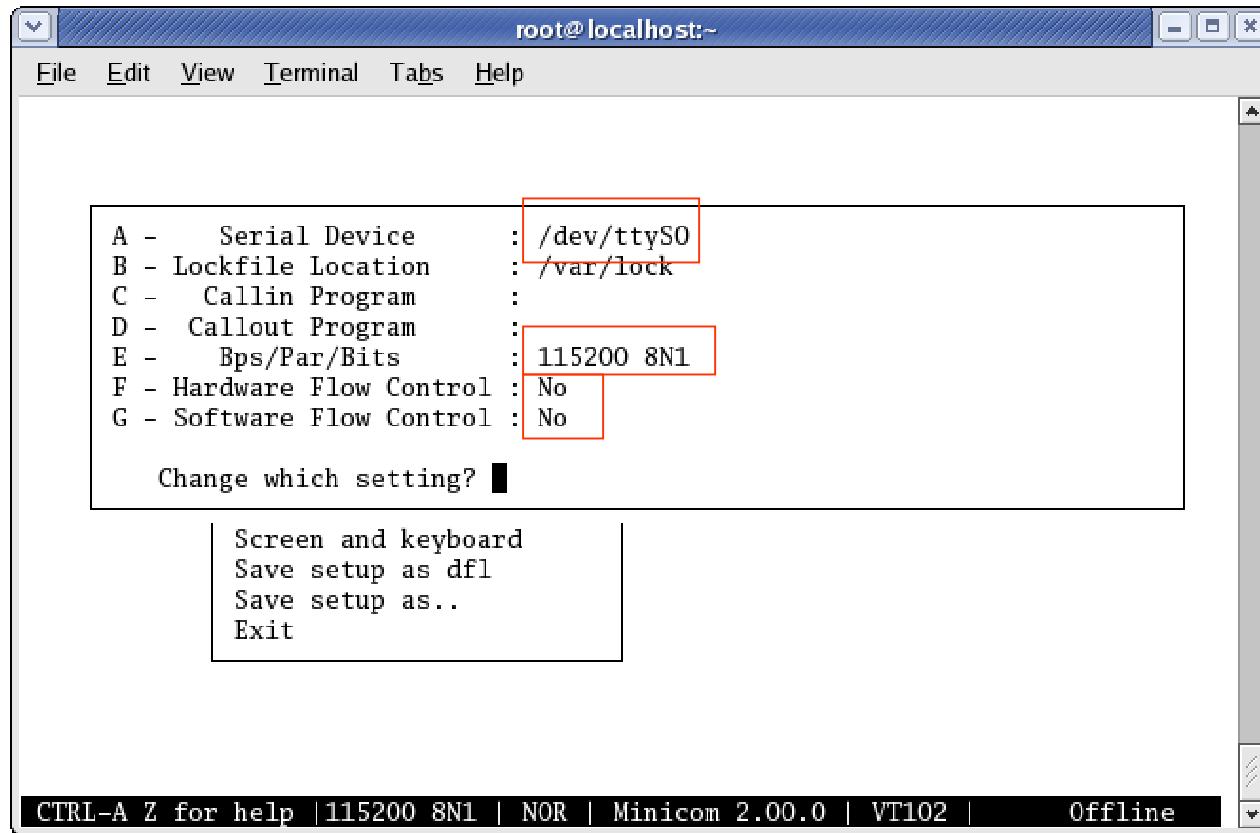
How to Start minicom

- ❖ Start minicom]# minicom


- ❖ Use CTRL-A Z to enter into help
- ❖ Select 'O' to go into configuration

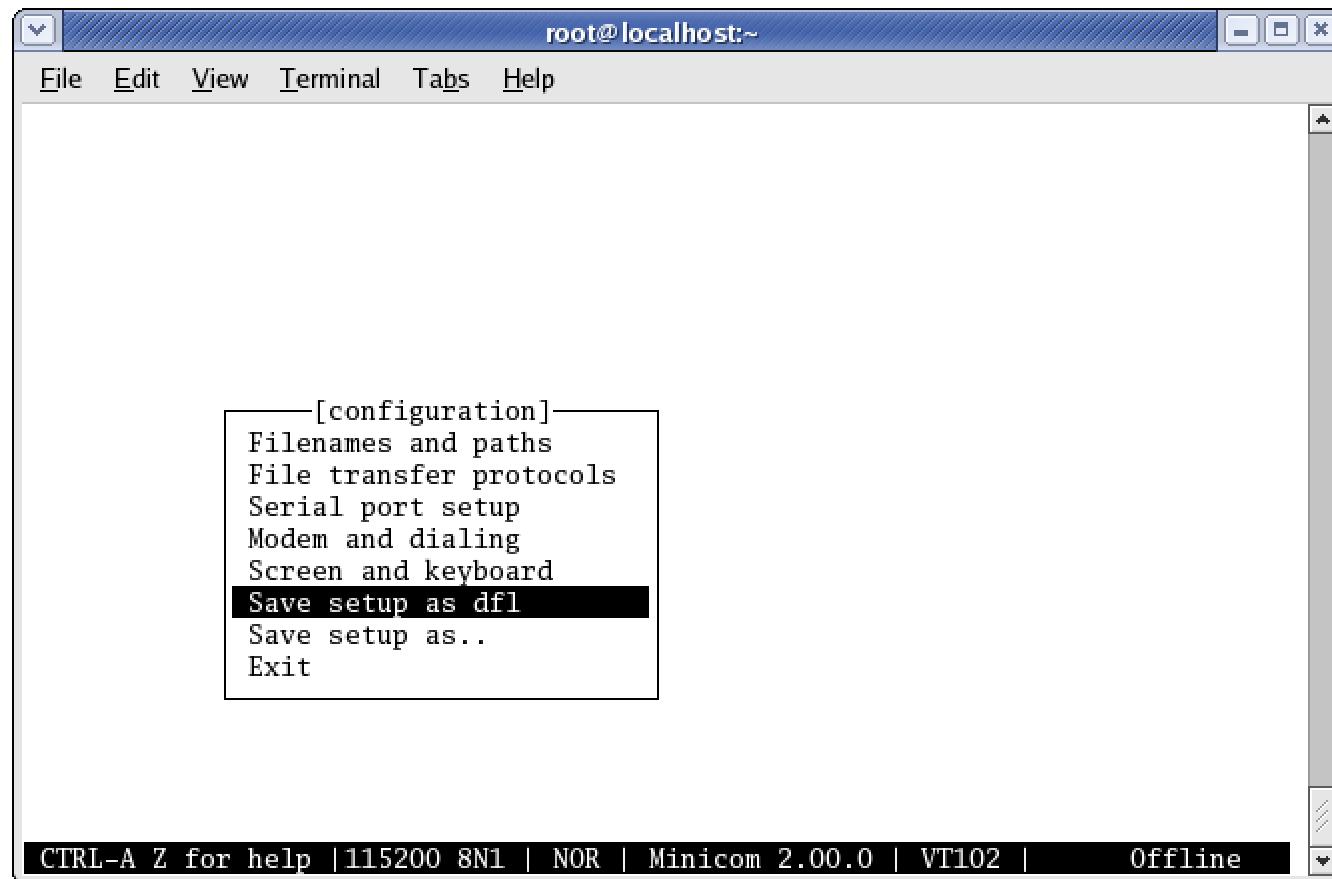
Serial Port Utility (minicom) - FAQ

How to Configure Minicom


- ❖ Select “Serial port setup”

Serial Port Utility (minicom) - FAQ

How to Configure Minicom

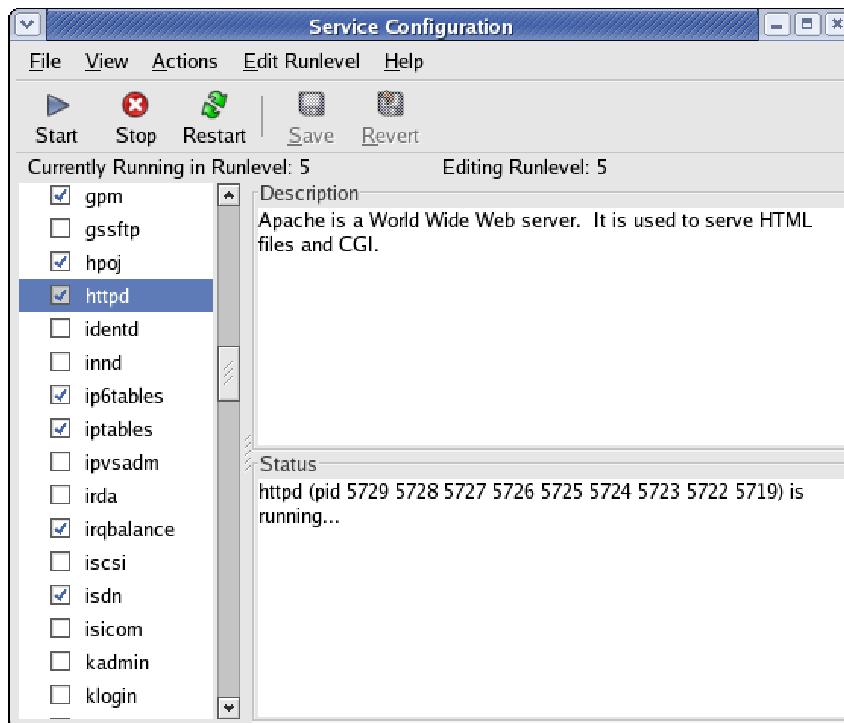

- ❖ Change to /dev/ttyS0
- ❖ Set rate to 115200 8N1 , no hardware & software flow control

Serial Port Utility (minicom) - FAQ

How to Configure Minicom

- ❖ Don't forget to save your setting in default file named “df1”

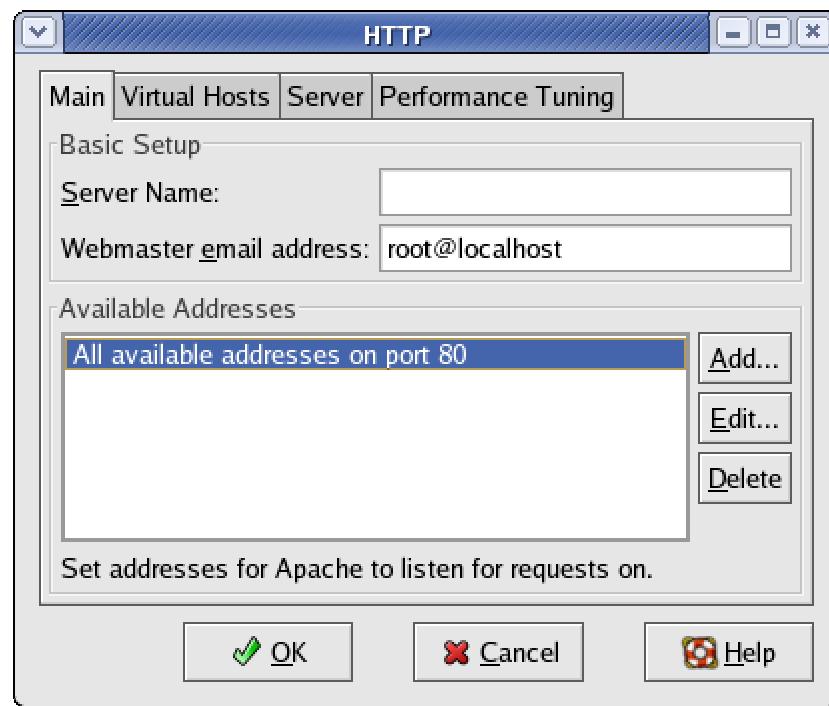
WebServer - FAQ



- ❖ How to quick setup Apache Web Server ?
- ❖ Which folder store HTML file, CGI or User define web page ?
- ❖ How to set default web page file name ?
- ❖ How to access to individual web folder using internet browser ?
- ❖ How to use special port instead of port 80 ?

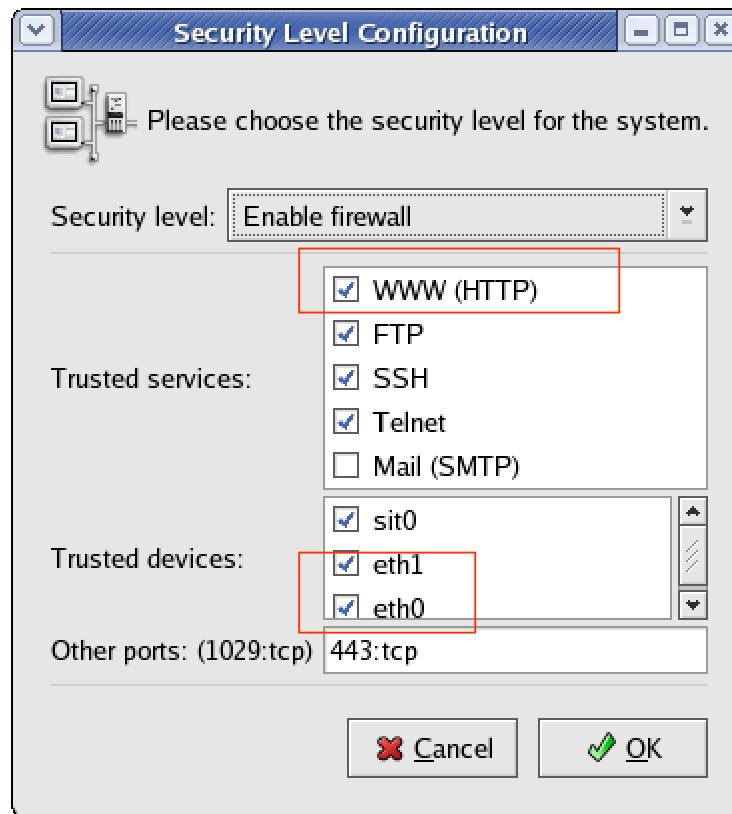
WebServer - FAQ

How to quick setup Apache Web Server ?


- ❖ Make sure http service is running : go to GUI, system setting -> server setting -> service make sure httpd selection is checked

WebServer - FAQ

How to quick setup Apache Web Server ?


- ❖ Make sure http service is running : go to GUI, system setting -> server setting -> HTTP make sure setting is correct

WebServer - FAQ

How to quick setup Apache Web Server ?

- ❖ Make sure security level is set correctly :
go GUI : system setting -> security level
check trusted service if the service is allow. Also check the necessary trusted devices

WebServer - FAQ

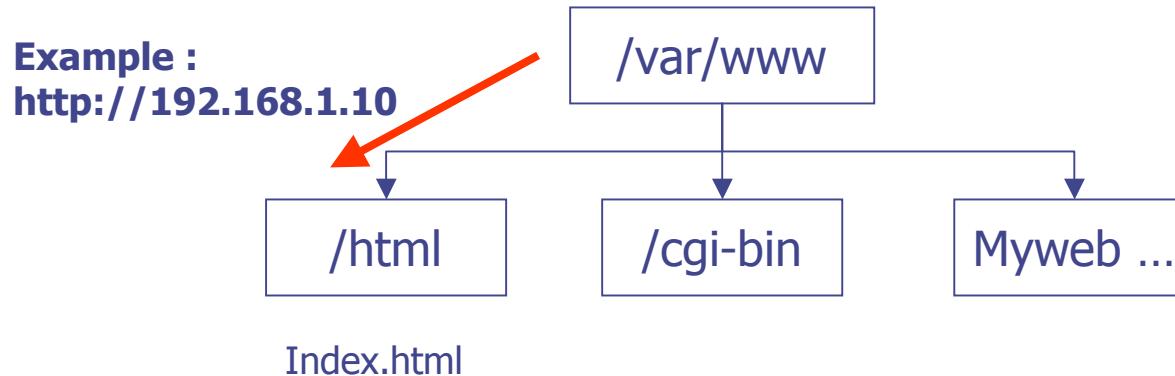
How to quick setup Apache Web Server ?

- ❖ In fedora core 2, the web server configuration file is in folder /etc/httpd/conf/httpd.conf
- ❖ Your web server computer must have an IP address (fix - prefer or dynamic)
- ❖ To view your IP address, use ifconfig –a on your Linux web server PC
- ❖ Key setting in the httpd.conf files :

```
#Listen 12.34.56.78:80
#Listen 80    # any IP on this system
Listen 10.20.100.71:80
```

...

```
DocumentRoot "/var/www/html"
```


...

```
ScriptAlias /cgi-bin/ "/var/www/cgi-bin/"
ScriptAlias /userweb/ "/var/www/userweb/"
```

WebServer - FAQ

How to quick setup Apache Web Server ?

- ❖ By default, when you `http://<web server IP address>` you will access to the folder `/var/www/html`.
- ❖ Put your default web page , `index.html`, and associate files into this folder

WebServer - FAQ

Which folder store HTML file, CGI or User define web page ?

- ❖ For proper house keeping, all cgi should put in the folder /cgi-bin which is created during installation with some default CGI programs . you can also create a folder called /userweb where it stores all your web pages. Both folder is under path /var/www/ directory. i.e.
/var/www/html
/var/www/cgi-bin
/var/www/userweb

How to access to individual web folder using internet browser ?

- ❖ To access the cgi folder , use `http://<server IP address>/cgi-bin/mycgi.cgi`
- ❖ To access the myweb folder, use `http://<server IP address>/userweb/`
(if your default page name is index.html in the myweb folder)