-~

~

.

(Contact Email : simhkeng@yahoo.com)

Part 3

By : HKSim

March 2007

Linux Programming in Brief

/

Ema

il: simhkeng@yahoo.com

Areas Involved

Linux GCC
C Language
programming

PC / Embedded
Hardware

Linux Programming
eProcess / Pipe / fork
oShell script

o... efc

Programming for
eSerial Port
eData Write/Read
*Blue tooth

o.. etc

Web Server

Network TCP/IP

HTML

cqi
php / java 51
... €lC Web design

software

Network
ePrograming
oTCP/TP
eUDP
oClient/server
o ..etc

Kernel / driver programming [«

Email :

simhkeng@yahoo.com

-

Maketile

Compilation Process

Pre-processor

Pre-processor runs before the complier and add or manage the lines of
code that will be sent for actual compilation.

Line of code that with the # (hash mark) is belongs to the pre-
processor , not compiler. The common instructions (called directives)
are :

#include

#define

#ifdef ... #endif this Supports conditional compilation.
Compilation

The compiler take in the xxx.c file and turn it into a object file with a .o
extension. When compiling with a gcc, this file is usually deleted once
the compilation is done successfully. Option extension can be use to
compile into object file e.g. xxx.0

Email: simhkeng@yahoo.com

Compilation Process

Linker

The linker combines the .o files and the specified libraries into a single
executable file. In linux ,by default, the library file /usr/lib/libc.so is
also included.

e.g If a program includes #inlcude<math.h>, the maths library
(/usr/lib/libm.so) will be linked to provide the final executable program.

Email: simhkeng@yahoo.com

Make Utility

¢ Use in large development project involves many C code files and header
files.

+** The make file content must be created in the file name called ‘“makefile”
or ‘“Makefile”’.

¢ To run the make utilities, just type (@ command prompt) :
...H#] make.
*» Make utility will look for the ‘“makefile” or ‘“Makefile’’ and execute it

*» Makefile is very sensitive to the format sequence , carriage return and
Tab. Tab cannot be replaced by Space.

Email: simhkeng@yahoo.com

Make Utility

Example of make file : makefile List of dependencies

Name of
file to build

"myfirstprogram|:

my_main.o my_c_functions.o

Pl gcc —o myfirstprogram my_main.o my_c_functions.o

A .S

TAB

my_main : my_main.c

gcc —C my_main.c

"Command use to
build he file

my_c_function : myfunction.c

gcc —c my_function.c

.PHONY : clean

clean : rm *.0

For command that
longer than one line, the
next line can be
continued using a "\”

Email: simhkeng@yahoo.com

Multi-file compile and link Example

myheader.h

/'

main.c
#include<stdio.h

>
#include "myheader.h"/

int main(void)

{
inti =10, k = 50;
int m, result;

m = add (i, k);
result = multiply(m, gInt);

printf("Final Result =
%od\n", result);

return O;

b

int add (int x, int y);

int multiply (int x, inty);

int gInt = 100; // declare global
integer

funcl.c

#include<stdio.h>

int add(int x, inty)

{

printf("Print from funcl.c->(x+y) =
%d\n",(x+Y));

return (x+y);

b

func2.c

Compile, link and create a

executable file called multi_files

#include<stdio.h>

int multiply(int x, int y)

{

printf("Print from func2.c->(x*y) =
%d\n",(x*y));

return (x*y);

b

Email :

simhkeng@yahoo.com

Multi-file compile and link Example

Compile and "“link” by hand

gcc —C main.c —0 main.o

gcc — funcl.c —o funcl.o

gcc — func2.c —o func2.0

gcc main.o funcl.o func2.0 —o multi_files

Using makefile

multi_files: main.o funcl.o func2.o
gcc -o multi_files main.o funcl.o func2.o

main.o :main.c

gcc -C main.c
funcl.o :funcl.c

gcc -c funcl.c
func2.0 :func2.c

gcc -c func2.c

.PHONY: clean
clean :
rm -f *.0

Email: simhkeng@yahoo.com

Compilation extension

Common gcc compiler’s interpretation of extension

-o filename - output to a file call “filename” If not specified, default is a.out
-C - compile without linking
-Idirname - specific directory that gcc will search for include file

-Ldirname - specific directory that gcc will search for library file

-static - link the static library

-lmylib - link the mylib library

-g - include standard debugging information

-O - optimize the compiled code

-W - suppress all warning message

-Wall - display all the warning message that gcc can provide
-V - show the commands use in each step

Email: simhkeng@yahoo.com

-

~

Serial Port Programming

Serial Server Demo Connection

¢ Connect two PC to the A-LimEmb Serial port server
¢ A-LinEmb is running the serial port server program
*» What ever type on one PC will appear to another PC

Com2 - ttyS2 Com1 - ttySO
115200 8N1 115200 8N1

N /@

Email: simhkeng@yahoo.com

12

A-LInEmb COMXx

¢ By default, A-LinEmb COM1 is running the monitor program
which is use to monitor or command the A-LinEmb Server.

the default setting for COM1 is 115200 8N1
¢ Open 2" COM2 port, ttyS2. for communication

//portname=""'/dev/ttyS2'; // for Axis 2nd serial port
portname="'/dev/ttyS0''; // for PC
pf = open(portname, O_RDWR);
if (pf < 0) { printf('"\n *** Serial Port Open Error ****\n'"); }

“+ modify the port configuration
tcgetattr(pf, &pts);
pots = pts; // note : static struct termios pots;

/* # of data bits */
/Ipts.c_cflag |= CS5; //CS8, CS7, CS6 , CS5
pts.c_cflag |= CS8; //CS8, CS7, CS6 , CS5

Email: simhkeng@yahoo.com

13

A-LInEmb COMXx

** Set number of stop bit
pts.c_cflag |= 0; // 1 stop bit
// pts.c_cflag |= CSTOPB; // 2 stop bits

¢ Set parity
pts.c_cflag I=0; // No parity

/* odd parity setting */
/] pts.c_cflag |= PARENB; // parity enable
/] pts.c_cflag |= PARODD:;

/* even parity setting */
// pts.c_cflag |= PARENB; // parity enable

Email: simhkeng@yahoo.com

14

-

~

Network Socket
Programming

Network Socket

¢ A socket is a communication connection point that one can named and
addressed in a network

** Socket layer sits between transport layer and application layers.

L7 APDU application
L6 PPDU presentation (< applications
L5 SPDU session
Socket API (BSD) =
L4 TCP UDP | transport
L3 Packet Network
L2 Frame MAC
L1 Bits Physical

“* Socket Application Program Interface (API) are the network
standard for TCP/IP

“* Socket programming shows how to use socket API to establish
communication link between computers

Email :

simhkeng@yahoo.com

16

Network Socket

How Socket Work?
*» Socket is represented by an integer called socket descriptor
¢ Socket are commonly used for client / server interaction

¢ Server program running on one PC (server) and client program
running on another PC (client).Client connects to server, exchange
information

“* Socket exists as long as the process maintains an open link to the socket
“* When process completed, socket is disconnected

ap 1 . ap 2 ap n t--
Port 1| |Port?2 Portn| :
TCP UDP
IP
MAC

!

. — socket

Network layer (IP) provide
routing over the internet.

Network

Email :

simhkeng@yahoo.com

17

Network Socket

3 elements for setting up network socket

«Host
Host are identified by IP address.
e.g IPv4 address 192.168.1.20 — a 32 bits address
s Protocol
Specifies the detail of communication over socket
TCP - Transmission Control Protocol
UDP - User Datagram Protocol
“Port
End point for a given process (interface)
Port number < 1024 are reserved for well-known services
Port number > 1024 are reserved for application

Note : Socket interface has a set of predefined symbolic constants and
data structure declaration. (/usr/include/bit/)
AF_xxx - Address family constant in <socket.h>
PF_xxx - protocol type constant in <types.h>

Email: simhkeng@yahoo.com

18

Client/Server Model

Role of client / server model
** Server — response to request
¢ Client — make request.
% Socket API provides functions that are specific to client and server
s Two client / server models, connection-oriented and connectionless

A-LinEmb
Server

PC
Server

Clients

Email: simhkeng@yahoo.com

19

Client/Server Model

Connection-oriented
“» After a server opened a network socket and bind the socket
with the IP address and port number, the server waits for
clients to request a service (client connect).

> After accepted the client’s connection request, the client-to-
server data exchange takes place until the task is completed.
The client then disconnect from the server by closing the
socket.

¢ Server uses one socket for listening to client’s request and uses
another socket for data exchange with the connected client.

¢ The dual socket model can be expended into multiple socket
for data exchange with multiple clients ,using fork() function,
to generate a child for each client’s data exchange. The listen
socket remain a one.

Email: simhkeng@yahoo.com

20

Client/Server Model

Multi-Users Using fork()

Parent process ended

occurrence of
the zombie process

To avoid the >

Initial Process
l pid =0
pid = fork()
. g O
e
S, O
’ | BE
The original R
le)borlglna Starting Child | ; § =
rocess IR
Process 2 @
) &8
>
l child process
Parent wait() «—— Child process ended
| v
Parent END .

Email: simhkeng@yahoo.com

Client/Server Model

Connectionless

¢ Connectionless communication implies that no connection is
established over which a dialog or data transfer takes place .
The server program designates a name that identifies where to
receive end send data.

¢ Server obtains the client’s IP address from the packet it
received

Email: simhkeng@yahoo.com

22

Client/Server Model

Steps involve in connection-oriented socket application
Server

*» Create socket on server ,called passive socket, using socket()

¢ Use bind() to bind the server to an address and port

+» call the listen() function to check if any client request for connection
If client is requesting for connection ...

¢ use accept() function to accept client’s connection request — single
client

» use accept() function to accept client’s connection request and create
a new server side client socket using fork() for data exchange —
multi-client model

¢ Data can send (using send()) or receive (using recv())
asynchronously between client and sever.

“* When completed, the client will use then close() API to close the
connection. The socket for this particular client is thus close too.

Email: simhkeng@yahoo.com

23

Client/Server Model

Steps involve in connection-oriented socket application

Client

*» Create socket , call active socket, using socket()

¢ Using connect() to connect to a server (specify the IP address and Port)

¢ Perform data I/0O using send()/recv() asynchronously
+* close() socket

Email: simhkeng@yahoo.com

24

Client/Server Model

Steps involve in connection-oriented socket application

write()/
read()

server

Passive socket

Socket ()

~N

J/

Bind ()

~N

J/

Ve

.

Listen ()

~N

J/

[Accept () }

client | Active socket

[Socket () }

Establish connection (

| Connect () }

write()/

[send()/reCV()L Data transfer »[send()/recv()} read()

close

close

Email: simhkeng@yahoo.com

25

Connection-oriented communication send() / recv()

Server

#include <stdio.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netdb.h>

int main (int argc , char *argv[])

{ XX

serverSocket = socket(AF_INET, SOCK_STREAM,0);
00

myServer.sin_family=AF INET;

myServer.sin_port=htons(appPort);

//myServer.sin_addr.s_addr=inet_addr(myServerIP); // or
myServer.sin_addr.s_addr=htonl(INADDR_ANY);

[N N J
returnStatus = bind(serverSocket, (struct sockaddr *)&myServer,
sizeof(myServer));
[N N J

returnStatus=listen(serverSocket, listenBacklog);

Email: simhkeng@yahoo.com

26

Connection-oriented communication send() / recv()
Server

while(1)
{
struct sockaddr_in clientName={0};
int clientSocket=0;
int clientNameLength = sizeof(clientName);

®®¢® //wait here

clientSocket = accept(serverSocket, (struct sockaddr *)&clientName,
&clientNameLength);

byteSent=write(clientSocket, welcomeMsg,strlen(welcomeMsg));
[N N J

// get messgage from client
byteReceived = read(clientSocket, buffer, sizeof(buffer));

close(clientSocket);

}

Email: simhkeng@yahoo.com

27

Connection-oriented communication send() / recv()
Client

clientSocket = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);
00

/* retrieve the port number for connecting */

appPort = atoi(argv[2]);

serverToConnect.sin_family = AF_INET;

serverToConnect.sin_addr.s_addr=inet_addr(argv[1]);

serverToConnect.sin_port = htons(appPort);

00

/* connect to the address and port with our socket */

returnStatus = connect(clientSocket, (struct sockaddr *)&serverToConnect,
sizeof(serverToConnect));

00
byteReceived = read(clientSocket, buffer, sizeof(buffer));
byteSent=write(clientSocket, ackMsg,strlen(ackMsg));

Email: simhkeng@yahoo.com

28

-

~

Write/Read Data to file

Write Binary Format to File

struct devicePktData
{

char name[20];
char IPAddr[20];
char date[20];
char time[20];
char datal[20];
char data2[20];
char data3[20];

15

—> struct devicePktData Devicel,Device2;

// simulated data
strepy(Devicel.name,''Devicel");

strcpy(Devicel.datal,"DATA1:1234");
strepy(Devicel.data2," DATA2:5678");
strepy(Devicel.data3,"" DATA3:9012");

strepy(Devicel . IPAddr,''192.168.1.10");

l

// pass the struct and filename for writing
if (writeBinaryFile(Devicel,&fileName[0]) !=-1) |
{ return (0);} else { return (-1);}

Next page

>

30

Email: simhkeng@yahoo.com

Write Binary Format to File

int writeBinaryFile(struct devicePktData myDataStructure, char *fileName)

{
FILE *fp;
int is;

fp=f0pen(fileName,|"a+b");

if (fp == NULL)
{ printf(""\n+++ Error : file open error +++\n"');
return(-1); }

Is =Qf_;write(&myDataStructure,sizeof(myDataStructure),1,fp);
fclose(Ip);
return(is);

}

Email: simhkeng@yahoo.com

31

Read Data from Binary File

int readBinaryFile(struct devicePktData *s, char *fileName, int maxRecord)
{
FILE *fp;
int is;
fp=fopen(fileName{''rb"");
if (fp ==NULL)
{ printf('"\n+++ Error : file open error +++\n'");
exit(-1); }
is =1;
while(| (fread(s,sizeof(*s),1,fp)>0) & & (is <= maxRecord) |
{

//printf(''Display from function= %d %s\n'',is,s->name);
is++;

s++; }

fclose(fp);

printf(''Total record read =%d\n"',is-1);

return (is-1); }

Email: simhkeng@yahoo.com

32

Thank you

For Future Contact :

Sim H K
stimhkeng @yahoo.com

A

Email: simhkeng@yahoo.com

