
1

Email : simhkeng@yahoo.com

Part 3

Linux Programming in Brief

By : H K Sim
(Contact Email : simhkeng@yahoo.com)

March 2007

2

Email : simhkeng@yahoo.com

Areas Involved

Linux GCC
C Language
programming

Linux Programming
•Process / Pipe / fork
•Shell script
•… etc

PC / Embedded
Hardware

Programming for
•Serial Port
•Data Write/Read
•Blue tooth
•… etc

Network TCP/IP

Network
•Programing
•TCP/TP
•UDP
•Client/server
•…etc

Web Server

HTML
cgi
php / java
…etc

K
e
rn
e
l
/
d
ri
v
e
r
p
ro
g
ra
m
m
in
g

Web design
software

3

Email : simhkeng@yahoo.com

Makefile

4

Email : simhkeng@yahoo.com

Compilation Process

Pre-processor

Pre-processor runs before the complier and add or manage the lines of

code that will be sent for actual compilation.

Line of code that with the # (hash mark) is belongs to the pre-

processor , not compiler. The common instructions (called directives)

are :

#include

#define

#ifdef … #endif this Supports conditional compilation.

Compilation

The compiler take in the xxx.c file and turn it into a object file with a .o

extension. When compiling with a gcc, this file is usually deleted once

the compilation is done successfully. Option extension can be use to

compile into object file e.g. xxx.o

5

Email : simhkeng@yahoo.com

Compilation Process

Linker

The linker combines the .o files and the specified libraries into a single

executable file. In linux ,by default, the library file /usr/lib/libc.so is

also included.

e.g If a program includes #inlcude<math.h>, the maths library

(/usr/lib/libm.so) will be linked to provide the final executable program.

6

Email : simhkeng@yahoo.com

Make Utility

� Use in large development project involves many C code files and header

files.

� The make file content must be created in the file name called “makefile”

or “Makefile”.

� To run the make utilities, just type (@ command prompt) :

…#] make.

� Make utility will look for the “makefile” or “Makefile” and execute it

� Makefile is very sensitive to the format sequence , carriage return and

Tab. Tab cannot be replaced by Space.

7

Email : simhkeng@yahoo.com

Make Utility

Name of
file to build

Example of make file : makefile List of dependencies

TAB

For command that
longer than one line, the
next line can be
continued using a “\”

Command use to
build he file

myfirstprogram : my_main.o my_c_functions.o

gcc –o myfirstprogram my_main.o my_c_functions.o

my_main : my_main.c

gcc –c my_main.c

my_c_function : myfunction.c

gcc –c my_function.c

.PHONY : clean

clean : rm *.o

8

Email : simhkeng@yahoo.com

Multi-file compile and link Example

#include<stdio.h>
#include "myheader.h"

int main(void)
{
int i = 10, k = 50;
int m, result;

m = add (i,k);
result = multiply(m, gInt);

printf("Final Result =
%d\n",result);

return 0;
}

main.c

#include<stdio.h>
int add(int x, int y)
{
printf("Print from func1.c->(x+y) =
%d\n",(x+y));
return (x+y);
}

func1.c

#include<stdio.h>
int multiply(int x, int y)
{
printf("Print from func2.c->(x*y) =
%d\n",(x*y));
return (x*y);
}

func2.c

int add (int x, int y);
int multiply (int x, int y);
int gInt = 100; // declare global
integer

myheader.h

Compile , link and create a
executable file called multi_files

9

Email : simhkeng@yahoo.com

multi_files: main.o func1.o func2.o
gcc -o multi_files main.o func1.o func2.o

main.o :main.c
gcc -c main.c

func1.o :func1.c
gcc -c func1.c

func2.o :func2.c
gcc -c func2.c

.PHONY: clean
clean :

rm -f *.o

Using makefile

gcc –c main.c –o main.o
gcc –c func1.c –o func1.o
gcc –c func2.c –o func2.o
gcc main.o func1.o func2.o –o multi_files

Compile and “link” by hand

Multi-file compile and link Example

10

Email : simhkeng@yahoo.com

Compilation extension

Common gcc compiler’s interpretation of extension

-o filename - output to a file call “filename” If not specified, default is a.out

-c - compile without linking

-Idirname - specific directory that gcc will search for include file

-Ldirname - specific directory that gcc will search for library file

-static - link the static library

-lmylib - link the mylib library

-g - include standard debugging information

-O - optimize the compiled code

-W - suppress all warning message

-Wall - display all the warning message that gcc can provide

-v - show the commands use in each step

11

Email : simhkeng@yahoo.com

Serial Port Programming

12

Email : simhkeng@yahoo.com

Serial Server Demo Connection

� Connect two PC to the A-LimEmb Serial port server

� A-LinEmb is running the serial port server program

� What ever type on one PC will appear to another PC

Com2 - ttyS2
115200 8N1

Com1 - ttyS0
115200 8N1

13

Email : simhkeng@yahoo.com

A-LinEmb COMx

� By default, A-LinEmb COM1 is running the monitor program

which is use to monitor or command the A-LinEmb Server.

the default setting for COM1 is 115200 8N1

� Open 2nd COM2 port, ttyS2. for communication

//portname="/dev/ttyS2"; // for Axis 2nd serial port

portname="/dev/ttyS0"; // for PC

pf = open(portname, O_RDWR);

if (pf < 0) { printf("\n *** Serial Port Open Error ****\n"); }

� modify the port configuration
tcgetattr(pf, &pts);

pots = pts; // note : static struct termios pots;

/* # of data bits */

//pts.c_cflag |= CS5; //CS8, CS7, CS6 , CS5

pts.c_cflag |= CS8; //CS8, CS7, CS6 , CS5

14

Email : simhkeng@yahoo.com

� Set number of stop bit
pts.c_cflag |= 0; // 1 stop bit

// pts.c_cflag |= CSTOPB; // 2 stop bits

� Set parity
pts.c_cflag |= 0; // No parity

/* odd parity setting */

// pts.c_cflag |= PARENB; // parity enable

// pts.c_cflag |= PARODD;

/* even parity setting */

// pts.c_cflag |= PARENB; // parity enable

A-LinEmb COMx

15

Email : simhkeng@yahoo.com

Network Socket

Programming

16

Email : simhkeng@yahoo.com

Network Socket

� A socket is a communication connection point that one can named and

addressed in a network

� Socket layer sits between transport layer and application layers.

� Socket Application Program Interface (API) are the network

standard for TCP/IP

� Socket programming shows how to use socket API to establish

communication link between computers

Bits

Frame

Packet

TCP UDP

Socket API (BSD)

APDU

L1

L2

L3

L4

L7

transport

application

PPDUL6

SPDUL5

presentation

session

Network

MAC

Physical

applications

17

Email : simhkeng@yahoo.com

How Socket Work?

� Socket is represented by an integer called socket descriptor

� Socket are commonly used for client / server interaction

� Server program running on one PC (server) and client program

running on another PC (client).Client connects to server, exchange

information

� Socket exists as long as the process maintains an open link to the socket

� When process completed, socket is disconnected

Network layer (IP) provide

routing over the internet.

socket

IP

TCP UDP

Port 1

app1

Port 2

app2

Port n

appn

Network

MAC

Network Socket

18

Email : simhkeng@yahoo.com

�Host

Host are identified by IP address.
e.g IPv4 address 192.168.1.20 – a 32 bits address

�Protocol

Specifies the detail of communication over socket

TCP – Transmission Control Protocol

UDP – User Datagram Protocol

�Port

End point for a given process (interface)

Port number < 1024 are reserved for well-known services

Port number > 1024 are reserved for application

Note : Socket interface has a set of predefined symbolic constants and

data structure declaration. (/usr/include/bit/)

AF_xxx - Address family constant in <socket.h>

PF_xxx - protocol type constant in <types.h>

Network Socket

3 elements for setting up network socket

19

Email : simhkeng@yahoo.com

Client/Server Model

� Server – response to request

� Client – make request.

� Socket API provides functions that are specific to client and server

� Two client / server models, connection-oriented and connectionless

Role of client / server model

PC
Server

Clients

A-LinEmb
Server

20

Email : simhkeng@yahoo.com

Client/Server Model

Connection-oriented

�After a server opened a network socket and bind the socket

with the IP address and port number, the server waits for

clients to request a service (client connect).

�After accepted the client’s connection request, the client-to-

server data exchange takes place until the task is completed.

The client then disconnect from the server by closing the

socket.

�Server uses one socket for listening to client’s request and uses

another socket for data exchange with the connected client.

�The dual socket model can be expended into multiple socket

for data exchange with multiple clients ,using fork() function,

to generate a child for each client’s data exchange. The listen

socket remain a one.

21

Email : simhkeng@yahoo.com

Multi-Users Using fork()

To avoid the

occurrence of

the zombie process

Initial Process

pid = fork()

The original

Process

pid = 0

pid > 0

Parent process ended

child process

Child process ended

O
v
erla

p
p

in
g
 p

a
ren

t

a
n

d
 ch

ild
 p

ro
cesses

Parent wait()

Parent END

Starting Child

Process

Client/Server Model

22

Email : simhkeng@yahoo.com

Client/Server Model

Connectionless

�Connectionless communication implies that no connection is

established over which a dialog or data transfer takes place .

The server program designates a name that identifies where to

receive end send data.

�Server obtains the client’s IP address from the packet it

received

23

Email : simhkeng@yahoo.com

Client/Server Model

Server

� Create socket on server ,called passive socket, using socket()

� Use bind() to bind the server to an address and port

� call the listen() function to check if any client request for connection

If client is requesting for connection …

� use accept() function to accept client’s connection request – single

client

� use accept() function to accept client’s connection request and create

a new server side client socket using fork() for data exchange –

multi-client model

� Data can send (using send()) or receive (using recv())

asynchronously between client and sever.

� When completed, the client will use then close() API to close the

connection. The socket for this particular client is thus close too.

Steps involve in connection-oriented socket application

24

Email : simhkeng@yahoo.com

Client/Server Model

Client

� Create socket , call active socket, using socket()

� Using connect() to connect to a server (specify the IP address and Port)

� Perform data I/O using send()/recv() asynchronously

� close() socket

Steps involve in connection-oriented socket application

25

Email : simhkeng@yahoo.com

Client/Server Model

close

send()/recv()

Accept ()

Listen ()

Bind ()

Socket ()

server

send()/recv()

Connect ()

Socket ()

client

Establish connection

Data transfer

Passive socket

Active socket

write()/

read()

write()/

read()

Steps involve in connection-oriented socket application

close

26

Email : simhkeng@yahoo.com

int main (int argc , char *argv[])

{
serverSocket = socket(AF_INET, SOCK_STREAM,0);

myServer.sin_family=AF_INET;

myServer.sin_port=htons(appPort);

//myServer.sin_addr.s_addr=inet_addr(myServerIP); // or

myServer.sin_addr.s_addr=htonl(INADDR_ANY);

returnStatus = bind(serverSocket, (struct sockaddr *)&myServer,

sizeof(myServer));

returnStatus=listen(serverSocket, listenBacklog);

Connection-oriented communication send() / recv()

Server

#include <stdio.h>

#include <sys/types.h>

#include <sys/socket.h>

#include <netdb.h>

27

Email : simhkeng@yahoo.com

while(1)

{

struct sockaddr_in clientName={0};

int clientSocket=0;

int clientNameLength = sizeof(clientName);

//wait here

clientSocket = accept(serverSocket, (struct sockaddr *)&clientName,

&clientNameLength);

byteSent=write(clientSocket, welcomeMsg,strlen(welcomeMsg));

// get messgage from client

byteReceived = read(clientSocket, buffer, sizeof(buffer));

close(clientSocket);

}

Connection-oriented communication send() / recv()

Server

28

Email : simhkeng@yahoo.com

clientSocket = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);

/* retrieve the port number for connecting */

appPort = atoi(argv[2]);

serverToConnect.sin_family = AF_INET;

serverToConnect.sin_addr.s_addr=inet_addr(argv[1]);

serverToConnect.sin_port = htons(appPort);

/* connect to the address and port with our socket */

returnStatus = connect(clientSocket, (struct sockaddr *)&serverToConnect,

sizeof(serverToConnect));

byteReceived = read(clientSocket, buffer, sizeof(buffer));

byteSent=write(clientSocket, ackMsg,strlen(ackMsg));

Connection-oriented communication send() / recv()

Client

29

Email : simhkeng@yahoo.com

Write/Read Data to file

30

Email : simhkeng@yahoo.com

Write Binary Format to File

struct devicePktData

{

char name[20];

char IPAddr[20];

char date[20];

char time[20];

char data1[20];

char data2[20];

char data3[20];

};

struct devicePktData Device1,Device2;

// simulated data

strcpy(Device1.name,"Device1");

strcpy(Device1.IPAddr,"192.168.1.10");

strcpy(Device1.data1,"DATA1:1234");

strcpy(Device1.data2,"DATA2:5678");

strcpy(Device1.data3,"DATA3:9012");

// pass the struct and filename for writing

if (writeBinaryFile(Device1,&fileName[0]) != -1)

{ return (0);} else { return (-1);}

Next page

31

Email : simhkeng@yahoo.com

int writeBinaryFile(struct devicePktData myDataStructure, char *fileName)

{

FILE *fp;

int is;

fp=fopen(fileName,"a+b");

if (fp == NULL)

{ printf("\n+++ Error : file open error +++\n");

return(-1); }

Is = fwrite(&myDataStructure,sizeof(myDataStructure),1,fp);

fclose(fp);

return(is);

}

Write Binary Format to File

32

Email : simhkeng@yahoo.com

Read Data from Binary File

int readBinaryFile(struct devicePktData *s, char *fileName, int maxRecord)

{

FILE *fp;

int is;

fp=fopen(fileName,"rb");

if (fp == NULL)

{ printf("\n+++ Error : file open error +++\n");

exit(-1); }

is =1;

while((fread(s,sizeof(*s),1,fp)>0) && (is <= maxRecord))

{

//printf("Display from function= %d %s\n",is,s->name);

is++;

s++; }

fclose(fp);

printf("Total record read =%d\n",is-1);

return (is-1); }

33

Email : simhkeng@yahoo.com

For Future Contact :
Sim H K

simhkeng@yahoo.com

Thank you

