
Simhkeng@yahoo.com

Android Programming Basic

(Part 1)

Date : Sept 2011 Rev 2.x

Nov 2011

Topic covered :

Basic Activity

User Interface (UI)

Layout

TextView / EditText / Button / Chechbox

RadioBUtton / ToggleButton / ImageButton

Intents

Moving from one activity to another

Passing items between activities

Get item from activity

Basic Activity Demo Project

myActivity

UI Demo projects

myActivity

simLinearUI

simBasicIO

simMoreGUI

Intents Demo Projects

simMultipleActivities

simPassItemsBetweenActivities

simGetItemFromActivity

Name : HK Sim

Contact : simhkeng@yahoo.com

Simhkeng@yahoo.com

Contents

1.0 Start a new application

2.0 Activity

2.1 Create an activity

2.2 User Interface

2.3 AndroidMainfest.xml

2.4 Activity Chart

2.5 Events in an activity

2.6 Create more than one activity in an application

2.6.1 Add new layout XML file (for multiple activities)

2.6.2 Add new class program file (xxx.java)

2.7 Program structure

3.0 User Interface (UI)

3.1 Layout

3.1.1 Linear Layout

3.1.2 TableRow

3.1.3 TableLayout

3.1.4 Dimension setting in TableRow

3.2 Basic User Interface (UI)

3.2.1 TextView

3.2.1.1 Declare TextView variable

3.2.1.2 Associate with a UI element

3.2.1.3 Action

3.2.1.4 Common TextView properties

3.2.2 EditText

3.2.2.1 Declare EditText variable

3.2.2.2 Associate with a UI element

3.2.2.3 Action

3.2.2.4 EditText Common properties

3.2,2.5 EditText Special input type

3.2.2.5.1 Phone number input

3.2.2.5.2 Name (text) input

3.2.2.5.3 Number input

3.2.2.5.4 List of input type selection

Simhkeng@yahoo.com

3.2.3 Button

3.2.3.1 Declare button variable

3.2.3.2 Associate with a UI element

3.2.3.3 Action

3.2.3.3.1 set Listener for normal click and long click

3.2.3.3.2 define action to be done when click

3.2.3.4 software to simulate click action

3.2.3.5 Button Common properties

3.3 More UI

3.3.1 CheckBox

3.3.1.1 Declare CheckBox variable

3.3.1.2 Associate with a UI element

3.3.1.3 Action

3.3.1.3.1 set Listener for normal click

3.3.1.3.2 define action to be done when click

3.3.1.4 Important CheckBox properties

3.3.2 Radio Button

3.3.2.1 Declare radio group and radio button

3.3.2.2 Associate with a UI element

3.3.2.3 Action

3.3.2.3.1 set Listener for normal click

3.3.2.3.2 define action to be done when click

3.3.2.4 Important radio button properties

3.3.3 Toogle Button

3.3.3.1 Declare Toogle button

3.3.3.2 Associate with a UI element

3.3.3.3 Action

3.3.3.3.1 set listener

3.3.3.3.2 Define action when click

3.3.4 Image Button

3.3.4.1 Declare Toogle button

3.3.4.2 Associate with a UI element

3.3.4.3 Action

3.3.4.3.1 set listener

3.3.4.3.2 Define action when click

Simhkeng@yahoo.com

3.4 Useful tips for User Interface (UI)

3.4.1 Hide the Activity title

3.4.2Fix the application position

3.4.3 Phone hardware independent dimension

3.4.4 Add Webview

4.0 Intent

4.1 Build-in intent

4.2 Private intent

4.2.1 Request information from new activity using intent

4.2.3 Passing information to a new activity using intent

Simhkeng@yahoo.com

1.0 Start a new application

Simhkeng@yahoo.com

Let us start a project with the following information :

Project name : myActivity

Android verion : 2.1 using Google API version 7

Application name : myActivityApp

Package Name : my.learn.myActivityPkt

Create activity : myActivity

Minimum SDK version : 7

myActivity.apk

Simhkeng@yahoo.com

If all the entry are done correctly according to the desire format, you will see the finish

button appears

Click Finish

The following folder has been created.

The android java application
program

The user UI xml file

Define setting and
API version

Simhkeng@yahoo.com

2.0 Activity

Project : myActivity

An activity is a window that contains the user interface of an application. An application can

have zero , one or more activities to handle different phase of the program. The main aim of
an activity is to interact with the user. The user interface of an activity is created during the
development phase and its default name is main.xml in the folder \ res \ layout \ main.xml.

Each activity is within a java program class.

If you have more than one activity in an application, you have to use intents to link them
together.

Every activity needs to declared in the AndroidManifest.xml .

2.1 Create an activity

To create an activity , you need to create a Java class that extends the Activity base class.

By default, the activity created contains the onCreate() event. You can then add in the rest of

events in your program.

This will be done automatically using the SDK.

package my.learn.myActivityPkt;
import android.app.Activity;
import android.os.Bundle;

public class myActivity extends Activity {

/** Called when the activity is first created. */
@Override
public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);
setContentView(R.layout.main);

}
}

2.2 User Interface

The associate UI file, main.xml , is as follows . By default, the layout is linear layout.

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:orientation="vertical"

android:layout_width="fill_parent"
android:layout_height="fill_parent"

>
<TextView

android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:text="@string/hello"

/>
</LinearLayout>

Simhkeng@yahoo.com

2.3 AndroidMainfest.xml

For Android Operating System to access an application, each application must declare its
variable components in the AndroidMainfest.xml file. The AndroidMainfest.xml file also

contain the required permissions and the behaviour for the application to run.

This file also contain the SDK version number.

If you have more than one activities in your application, you have to add in the additional

activities.

The basic AndroidMainfest.xml file is show below :

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"

package="my.learn.myActivityPkt"
android:versionCode="1"
android:versionName="1.0">

<application android:icon="@drawable/icon" android:label="@string/app_name">

<activity android:name=".myActivity"
android:label="@string/app_name">

<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />

</intent-filter>
</activity>

<activity android:name="configuration"></activity>
<activity android:name="viewLog"></activity>

</application>

<uses-sdk android:minSdkVersion="7" />

</manifest>

Additional activites
need to be declared.

Simhkeng@yahoo.com

Activity

Start

onCreate()

onStart()

onResume

Activity running

onPause()

onStop()

onDestroy()

Activity

Shutdown

onRestart()

Activity comes to

foreground

Activity comes to

foreground

Another activity
Comes infront

Of the activity

Acttivity no longer

visuible

Other application

Need memory

Process is
killed

User navigatge
Back to the

activity

onStop()

2.4 Activity Chart

Project : myActivity

Simhkeng@yahoo.com

2.5 Events in an activity

onCreate() – when the activity is first created

onStart() - when the activity becomes visible to user

onResume() – when the activity starts interacting with the user

onPause() – when the current activity is being paused and the previous activity is being
resumed. This happens in the case of more than one activity in an application.

onStop() – when the activity is no longer visible to user.

onDestroy() – called before the activity is destroyed by the system. This happens manually
or by system to conserve memory.

onRestart() – when the activity restart again

To study further on the events happens when the application is in operation, you can add

additional events and the log information in the myActivity class. When you run the
application in the debug mode, the log information will be displayed.

package my.learn.myActivityPkt;
import android.app.Activity;
import android.os.Bundle;

import android.util.Log;

public class myActivity extends Activity {
String myTag = "Events Study : ";

@Override
public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.main);
Log.d(myTag, "In the onCreate() event");

}
public void onStart()
{ super.onStart();

Log.d(myTag, "In the onStart() event"); }
public void onRestart()

{ super.onRestart();
Log.d(myTag, "In the onRestart() event"); }

public void onResume()
{ super.onResume();

Log.d(myTag, "In the onResume() event"); }

public void onPause()
{ super.onPause();

Log.d(myTag, "In the onPause() event"); }
public void onStop()

{ super.onStop();

Log.d(myTag, "In the onStop() event"); }
public void onDestroy()

{ super.onDestroy();
Log.d(myTag, "In the onDestroy() event"); }

}

Simhkeng@yahoo.com

When you run the application under debug mode and switch to DDMS . In the LogCat, you
will see the activation of each event involve. You can then add information like error message
so that you know where the error comes from.

Simhkeng@yahoo.com

2.6 Create more than one activity in an application

Project : simMultipleActivities

When you want to add new activity in an application, you need to basically do 3 things :

- Add a layout (xxx . xml file)

- Add an activity class (xxx . java file)

- Put the new activity in the AndroidManifest.xml file

2.6.1 Add new layout XML file (for multiple activities)

To create a new layout file, do the following :

Select layout fiolder , right click and select New. Select Other…

Simhkeng@yahoo.com

ssdsd
Select Android XML file

Enter the project name

Enter the file name
(no upper case letter)

Select a Layout type

Simhkeng@yahoo.com

2.6.2 Add new class program file (xxx.java)

You have to create a new activity class that link to the new layout.

Go tp src folder/package locatiion/ , right click and select New , follow by select Class

Enter the file name

Simhkeng@yahoo.com

A new activity (.java) program will be
generated as follows.

package sim.learn.multipleActivities;

public class viewMap {

}

You have to add the basic statement manually for
the new activity created.

package sim.learn.multipleActivities;

import android.app.Activity;

import android.os.Bundle;

public class viewMap extends Activity {

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.view_map);

} // onCreate

} // class()

You can now developing codes within this new activity

Simhkeng@yahoo.com

2.7 Program structure

public class BasicIO extends Activity{

@Override

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.main);

linkVariableToUI();

setListener();

} // onCreate() …

//########## Variable Definition ###########

String inputString ;

//########## UI Variable Definition ###########

Button entered_Button, quit_Button;

//######### Link UI Variable to UI ##########

public void linkVariableToUI()

{

entered_Button = (Button) findViewById(R.id.btn_entered);

quit_Button = (Button)findViewById(R.id.btn_quit);

}

//############### Action Setting ##############

public void setListener()

{

entered_Button.setOnClickListener(entered);

quit_Button.setOnClickListener(quit);

}

// subroutines and functions

private Button.OnClickListener entered = new Button.OnClickListener()

{

public void onClick(View v) {

…

}

};

private Button.OnClickListener quit = new Button.OnClickListener() {

public void onClick(View v) {

finish();

}

};

} // end of class BasicIO

Always have a quit program button

Simhkeng@yahoo.com

3.0 User Interface (UI)

The commonly used user interface object can be classified into the following groups :

Layout

this is the container of all the User Interface (UI) objects such as text box, button … e tc .
Commonly use is linear layout. Linear layout arrange UI object either vertically or horizontally
and therefore it has to work with table object or table row object for a more pleasant UI .

Absolute Layout , although is a more user friendly layout, should not be use as it may not be
support in the future Android SDK version.

basic objects

This include the TextView, EditView, Button, ImageButton , CheckBox, ToggleButton,
RadioButton and Radiogroup, ScrowView, ProgressBar

List View objects

Views that display a long list of items such as ListView and SpinnerView . Normally need to
work with ScrowView object.

Picker Views

Use to select the time and date such as TimePicker and DatePicker objects.

3.1 Layout

3.1.1 Linear Layout

The LinearLayout arranges views in a single column (vertical) or single row (horizontal) as
shown below :

This may not be very practical in real life application. To overcome this, you can insert UI
object container such as table/table rows or just table rows to contain single UI or a group of UI
objects.

There are other layouts available such as Frame Layout , Table Layout, Relative layout.

Simhkeng@yahoo.com

3.1.2 TableRow

In a LinearLayout, you can use a table and table row to contain the UI.

Let us use an example of putting 3 types of UI object, TextView, EditText and Button. The

detail of these UI object will be discussed in the later session.

A margin is set for the TextView and Edittext objects within a table row. You can also Layout
margin top to position the whole row at a specific location.

In an UI object, if you put a value to Layout margin, it means all round this object will have the
same value. If you want it to be only left, right, up or bottom, then you should use the

Layout margin bottom, left, right , top to set the respective margin.

tableRow1

TextView

EditText

Simhkeng@yahoo.com

3.1.3 TableLayout

TableLayout is use to position a group of l UI objects in a table column and row manner.

Following is an example how the UI objects are put in a table/row.

tableLayout1 contain tableRow1 and tableRow2. Each of the row contain a textview and a
EditText object. As they belong to same table, the alignment is automatically fixed once

you defined the row1.

tableRow3 and tableRow4 are not restricted to the previous table format as they are not

the child of the tableLayout1’s object.

Simhkeng@yahoo.com

3.1.4 Dimension setting in TableRow

The TextView and Edittext , has a padding of 5dip and 10dip respectively and therefore they
appear to be away from the edge of the row in all direction.

5 dip from the left object15 dip from the left of the raw

tableRow1 has 20 dip from
the top of the table

20 dip

Reference from
the object infront

Simhkeng@yahoo.com

TableLayout
Layout margin top : 20dip

tableRow2
Layout margin top : 10dip

tableRow1
Layout margin top : 50dip

Layout margin bottom : 10dip

50dip

tableRow3
Layout margin top : 20dip

Button5
Layout margin left : 10dip

Button6
Layout margin left : 20dip

Button7
Layout margin left : 15dip

Button6
Layout margin : 10dip

Project : simLinearUI (just to demostrate UI only)

Simhkeng@yahoo.com

3.2.1 TextView

TextView is similar to label in software programming. You can put text information to it to

display (by software) or read the content of the TextView. User can not input to TextView
element via keyboard. You can only write to TextView via programming.

3.2.1.1 Declare TextView variable

TextView labelInfomation;

…

3.2.1.2 Associate with a UI element

labelInfomation = (TextView) findViewById (R.id.lbl_information) ;

…

3.2.1.3 Action

Read from TextView

String myStr = labelInfomation . getText ();

Write to TextView

labelInfomation . setText (inputString); Output information

read information

3.2 Basic User Interface (UI)

Project : simBasicIO

EditText

Button

TextView

Simhkeng@yahoo.com

3.2.1.4 Common TextView properties

Left / right / top /botton

Equal padding

Simhkeng@yahoo.com

3.2.2 EditText

EditText is the element that user can enter information and software can read/write to EditText

element.

You can also display some guide lines for user input using the Hint property.

3.2.2.1 Declare EditText variable

EditText enterInformation_TextBox ;

. . .

3.2.2.2 Associate with a UI element

enterInformation_TextBox = (EditText) findViewById (R.id.txt_enterInformation);

. . .

3.2.2.3 Action

Read user input from EditText

If (enterInformation_TextBox . getText() . toString() . equals(“ ")) {

. . . } else

{ tempStr=tempStr + enterInformation_TextBox.getText().toString()+"\n" ; } Read information

3.2.2.4 EditText Common properties

Simhkeng@yahoo.com

3.2,2.5 EditText Special input type

3.2.2.5.1 Phone number input

For phone number input, you should set the EditText input type to “ number+phone “ .

Double click the EditText GUO to get the

properties list.

3.2.2.5.2 Name (text) input

For name(text) input, you should set the EditText input type to “ text ”

Simhkeng@yahoo.com

3.2.2.5.4 List of input type selection

3.2.2.5.3 Number input

For number input, you should set the EditText input type to “ numeric ”

3.2.2.6 Enable / Disable a EditText element

After enter the required information in a EditText element and start the program, you may

want to disable the EditText until you stop the program. This can be done using the
setEnable() method as follows :

Disable

interval_TextBox . setEnabled(false) ;

Enable

interval_TextBox . setEnabled(true) ;

Simhkeng@yahoo.com

3.2.3 Button

A button element requires the following :

- Define an element variable

- Link the element variable to the physical element in the layout

-Define the element’s action such as things to do when a button element is clicked

- write the action to be done when the button is clicked

-The click can be normal click or long click. This involve in the action statements .

3.2.3.1 Declare button variable

Button Button entered_Button, quit_Button ;

. . .

3.2.3.2 Associate with a UI element

entered_Button = (Button) findViewById (R.id.btn_entered) ;

quit_Button = (Button) findViewById (R.id.btn_quit) ;

3.2.3.3 Action

3.2.3.3.1 set Listener for normal click and long click

Normal click

entered_Button . setOnClickListener(entered) ;

quit_Button . setOnClickListener(quitProgram) ;

Long click

quit_Button . setOnLongClickListener(quitProgram) ;

3.2.3.3.2 define action to be done when click

Normal click

private Button.OnClickListener entered = new Button.OnClickListener() {

public void onClick(View v) {

…. things to do …

}

};

Long click

Long click is used when you want user to be sure he is clicking a important button such as
button to close an application.

For long click , the return is boolean instead of void and therefore you need to add a return a
true statement

private Button.OnClickListener quitProgram = new Button.OnClickListener() {

public void onLongClick(View v) {

finish();

return true;

}

};

Simhkeng@yahoo.com

3.2.3.5 Button Common properties

3.2.3.4 software to simulate click action

The following method can be use if you want to perform a button click function using software
instead of physically click the button.

sendMail_Button . performClick() ;

Simhkeng@yahoo.com

Important : for complex UI which contain many UI elements, tableLayout and tableRow
element shoud be use to hold the UI element in position.

tableLayout is used when you want to arrange items in a table format .

Item#1 Item#2

Item#1 Item#2

tableRow

tableRow

tableLayout

tableRow is used if you do not want more than one row in a specific format. TableRow can
be used without tableLayout. For layout within each tableRow is independent from other
tableRow.

3.3 More UI

Simhkeng@yahoo.com

3.3.1 CheckBox

Checkbox is used for user selection. The final result, checked or unchecked is read and

choice will be associate with some decision.

3.3.1.1 Declare CheckBox variable

CheckBox checkBox1_CheckBox;

3.3.1.2 Associate with a UI element

checkBox1_CheckBox = (CheckBox)findViewById(R.id.chk_check1) ;

3.3.1.3 Action

3.3.1.3.1 set Listener for normal click

checkBox1_CheckBox . setOnClickListener(checkBox);

3.3.1.3.2 define action to be done when click

private CheckBox . OnClickListener checkBox = new CheckBox.OnClickListener() {

public void onClick(View v) {

if (checkBox2_CheckBox.isChecked())

{

Toast.makeText(getBaseContext(), "CheckBox#2 Checked" , Toast.LENGTH_SHORT).show();

}else

{

Toast.makeText(getBaseContext(), "CheckBox#2 unChecked" , Toast.LENGTH_SHORT).show();

}

}

};

Simhkeng@yahoo.com

3.3.1.4 Important CheckBox properties

Simhkeng@yahoo.com

3.3.2 RadioButton

RadioGroup and Radio buttons are used when one and only one item in a group will be

selected. Radiobutton can be arrange in horizontally or vertically.

3.3.2.1 Declare radio group and radio button

You can declare RadioGroup and RadioButton. If you do not intent to use the function of
RadioGroup, you do not need to declare and you can use it just as a container for
radioButtons. In this case, only one radioButton will be selected within a group.

RadioButton radioButtonH1_RadioButton;

3.3.2.2 Associate with a UI element

radioButtonH1_RadioButton = (RadioButton) findViewById (R.id.rdo_h1) ;

3.3.2.3 Action

3.3.2.3.1 set Listener for normal click

radioButtonH1_RadioButton . setOnClickListener(groupCheck) ;

3.3.2 3.2 define action to be done when click

private CheckBox.OnClickListener groupCheck = new CheckBox.OnClickListener() {

public void onClick(View v) {

switch (v.getId()) {

case R.id.chk_check1:

if(checkBox1_CheckBox.isChecked()==true)

{ Toast.makeText(getBaseContext(), "CheckBox#1" , Toast.LENGTH_SHORT).show(); }

break;

case R.id.rdo_h1:

if(radioButtonH1_RadioButton.isChecked()==true)

{ Toast.makeText (getBaseContext(), "RadioButton H1 is checked"

,Toast.LENGTH_SHORT).show(); }

break;

case R.id.rdo_v1:

if(radioButtonH1_RadioButton.isChecked()==true)

{Toast.makeText (getBaseContext(), "RadioButton V1 is checked" ,

Toast.LENGTH_SHORT).show(); }

break;

case R.id.btn_readCheckBox:

String tempStr="";

if(checkBox1_CheckBox.isChecked()==true) { tempStr = tempStr + "CheckBox #1 \n"; }

if(checkBox2_CheckBox.isChecked()==true) { tempStr = tempStr + "CheckBox #2 \n"; }

if (tempStr== "") { tempStr = " Nothing is Checked !" ;}else

{ tempStr = tempStr + "Checked"; }

simPopUpMessage("Group Test",tempStr);

} }

} ;

Simhkeng@yahoo.com

3.3.2.4 Important radio button properties

Radio group properties

ValueProperty

horizontalhorizontal wrap_contentLayout width wrap_contentwrap_content @+id/radioGroup1Id
ValueProperty

wrap_contentLayout height

wrap_contentLayout width

trueChecked

15spText size

h_radio#1Text

@+id/rdo_h1Id

Radio properties

Simhkeng@yahoo.com

3.3.3 Toogle button

displays checked/unchecked states using a light indicator.

3.3.3.1 Declare Toogle button

ToggleButton toggle_ToggleButton;

3.3.3.2 Associate with a UI element

toggle_ToggleButton = (ToggleButton) findViewById(R.id.togBtn_toggleButton) ;

3.3.3.3 Action

3.3.3.3.1 set listener

toggle_ToggleButton . setOnClickListener(toogle) ;

3.3.3.3.2 Define action when click

private ToggleButton.OnClickListener toogle = new ToggleButton.OnClickListener() {

public void onClick(View v) {

if (toggle_ToggleButton.isChecked())

{ Toast.makeText(getBaseContext(), "Toggle Button is On" ,Toast.LENGTH_SHORT).show();

}else

{ Toast.makeText(getBaseContext(), "Toggle Button is OFF" , Toast.LENGTH_SHORT).show();

}

}
} ;

Toogle
button

Image
button

Simhkeng@yahoo.com

3.3.4 Image button

displays a button using an image icon. Prefer format is .png

3.3.4.1 Declare Toogle button

ImageButton image_ImageButton;

3.3.4.2 Associate with a UI element

image_ImageButton = (ImageButton) findViewById(R.id.imgBtn_imageButton) ;

3.3.4.3 Action

3.3.4.3.1 set listener

image_ImageButton . setOnClickListener(phoneCall) ;

3.3.4.3.2 Define action when click

private ToggleButton.OnClickListener phoneCall = new ToggleButton.OnClickListener()

{

public void onClick(View v) {

Intent i = new Intent(android.content.Intent.ACTION_DIAL , Uri.parse("tel:+651234567"));

startActivity(i);

}

} ;

3.3.4.4 image location

To define the image, you need to put the image in the res folder :

In the image button button, you need to set the src to point to the folder :

Simhkeng@yahoo.com

3.4.1 Hide the Activity title

When you use the SDK , by default, the Activity Title will be shown as follows:

Activity Title

For most of the cases, we do not want to display this information. This can be done by
putting the statement before the layout display

super.onCreate(savedInstanceState);

requestWindowFeature(Window.FEATURE_NO_TITLE);

setContentView(R.layout.main);

3.4.2Fix the application position

Most of the mobile are able to switch the application to portrait or landscape when the
phone position change. To fix the application to be in only one position no matter how the

phone turns, you can set the android:screenOrientation in the AndroidMainfest.xml file
to be “potrait” or “landscape” as follows :

<activity android:name=".soundVibration"

android:screenOrientation= "portrait"

android:label="@string/app_name">

<intent-filter>

</intent-filter>

</activity >

portrait or

landscape

3.4 Useful tips for User Interface (UI)

Simhkeng@yahoo.com

3.4.3 Phone hardware independent dimension

Dimension for user interface normally in term of pixel. But there are many different kind of
mobile devices which has different dimension in the display. If you run an application on a

device with dots per inch (dpi), the user interface appear smaller and smaller. To solve this
problem, it is recommended that you should use the resolution Independent measurement .

In Android, use the following units for dimension :

dp - density-independent pixel . An extract unit based on the density of the screen. On a

display with 160 dot per inch, 1 dp = 1 px (pixel)

dip – synonym for dp, use more often in Google .

sp – scale-independent pixels. Similar to dp but also scaled by user’s font size preference.

recommendation:

use sp for text size

Use dip for the rest.

3.4.4 Add Webview

To add a Webview object, place the following code in the layout .xml file (NO GUI ?)

<WebView
android:id="@+id/WebView01"
android:layout_width="wrap_content"

android:layout_height="wrap_content“
/>

Simhkeng@yahoo.com

4.0 Intent

Project : simMultipleActivities

When your application has more than one activity, to navigate from one activity to another,

you have to use intent.
An intent is a mechanism for describing a specific action. It is basically a message that you
pass to the Android OS saying that you want to do something.

To start a new activity in Android, we need to create an instance of the intent class. There
are two kinds of intents :

Build-in intent

Registered with the system and can be called from any application

Private (anonymous) intent

Used within a single application . We will discuss more for the private intent.

4.1 Build-in intent

Following is an example to use the build-in intent to access to a website. In this case, you

do not need to define the layout for the new public intent.

Intent viewMapIntent = new Intent("android.intent.action.VIEW“) ;

viewMapIntent . setData (Uri.parse("http://www.yahoo.com"));

startActivity(viewMapIntent);

Note that a pop-up menu (which is defined in the public intent) asking to use browser or

the system’s public intent for going to the website

Simhkeng@yahoo.com

If you want to keep the current intent, then do not use finish() method to close the current
intent.

current activity new activity

Intent moreGUIintent = new Intent() ;

moreGUIintent . setClass (multipleActivities.this, moreGUI.class);

startActivity(moreGUIintent);

multipleActivities . this . finish();
Close the calling activity if do not

Want to return back.

4.2 Private intent

Project : simMultipleActivities

As mentioned , private intent is used within an application to navigate from activity to activity.

While doing so, you can pass text value from activity to activity. The following statements
demonstrate the navigation of activities.

AndroidManifest.xml file

In this file, you must put all the additional activities as shown below :

<application android:icon="@drawable/icon" android:label="@string/app_name">

<activity android:name=".multipleActivities"

android:label="@string/app_name">

<intent-filter>

<action android:name="android.intent.action.MAIN" />

<category android:name="android.intent.category.LAUNCHER" />

</intent-filter>

</activity>

<activity android:name="moreGUI"></activity>

<activity android:name="webView"></activity>

</application>

Simhkeng@yahoo.com

Build-in Intent

Private Intent

Simhkeng@yahoo.com

protected void onActivityResult (int requestCode, int resultCode, Intent data)

{

String[] dataArray;

String dataReceived;

super . onActivityResult (requestCode, resultCode, data) ;

if (resultCode == 1) { //no error

dataReceived = data . getData() . toString() ;

Toast.makeText(this, dataReceived, Toast.LENGTH_LONG).show();

String delimiter = ",";

dataArray = dataReceived.split(delimiter);

if (dataArray.length == 2)

{

returnLatitude_Label.setText(dataArray[0]);

returnLongitude_Label.setText(dataArray[1]) ;

}

}

else {

Toast.makeText(this, "Fail", Toast.LENGTH_LONG).show();

}

}

4.2.1 Request information from new activity using intent

Project : simGetItemFromActivity

If you want the new activity to pass some information to you (after performing certain task) ,

In the Calling activity, you have to use the following statement to call the next activity.

startActivityForResult (myGetItemIntent , requestCode) ;

The requestCode is to indicate the operation is successful or not.

You have to add onActivityResult(…) to perform what you want to do when the information is

passed back from the next activity.

In the calling activity :

Intent myGetItemIntent = new Intent();

myGetItemIntent.setClass(getItemFromActivity.this, nextActivity.class);

startActivityForResult (myGetItemIntent, requestCode);

Simhkeng@yahoo.com

The location information is

Passed back to the calling

program

Simhkeng@yahoo.com

4.2.3 Passing information to a new activity using intent

Project : simPassItemsBetweenActivities

Very often you want a private intent to perform certain task with certain set of data (in String
format) , you can use the Bundle object to do it.

In the calling activity :

Intent myIntent = new Intent();

myIntent.setClass(passItemsBetweenActivities.this, nextActivity.class);

Bundle myData = new Bundle();

myData.putString("ITEM1", item1_TextBox.getText().toString());

myData.putString("ITEM2", item2_TextBox.getText().toString());

myIntent.putExtras(myData);

startActivity (myIntent) ;

The activity being called need to extract the information pass down from the calling activity
using the following statement

super.onCreate(savedInstanceState);

setContentView(R.layout.next_activity); //define layout use

linkVariableToUI();

setListener();

//receive data passing down

Bundle myBundle = getIntent().getExtras();

String item1 = myBundle.getString("ITEM1");

String item2 = myBundle.getString("ITEM2");

item1_TextBox.setText(item1);

item2_TextBox.setText(item2);

} //onCreate()

Extract the information at

the beginning of the

activity

Simhkeng@yahoo.com

String , Test1 and Test2 is

passed to the next activity

Simhkeng@yahoo.com

Android Programming Basic

(Part 2)

If you need part 2, please email to

Name : HK Sim

Contact : simhkeng@yahoo.com

